| 1. | Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration[J]. J Leukoc Biol, 2015, 98(5): 713-725. DOI: 10.1189/jlb.3RI0615-239R. | 
				                                                        
				                                                            
				                                                                | 2. | Wu H, Wang M, Li X, et al. The metaflammatory and immunometabolic role of macrophages and microglia in diabetic retinopathy[J]. Human Cell, 2021, 34(6): 1617-1628. DOI: 10.1007/s13577-021-00580-6. | 
				                                                        
				                                                            
				                                                                | 3. | Jo Dh, Yun Jh, Cho Cs, et al. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy[J]. Glia, 2019, 67(2): 321-331. DOI: 10.1002/glia.23542. | 
				                                                        
				                                                            
				                                                                | 4. | Zhang T, Ouyang H, Mei X, et al. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway[J]. FASEB J, 2019, 33(11): 11776-11790. DOI: 10.1096/fj.201802614RRR. | 
				                                                        
				                                                            
				                                                                | 5. | Jo S, Kim Hr, Mun Y, et al. Transgelin-2 in immunity: its implication in cell therapy[J]. J Leukoc Biol, 2018, 104(5): 903-910. DOI: 10.1002/jlb.mr1117-470r. | 
				                                                        
				                                                            
				                                                                | 6. | Na BR, Kim HR, Piragyte I, et al. TAGLN2 regulates T cell activation by stabilizing the actin cytoskeleton at the immunological synapse[J]. J Cell Biol, 2015, 209(1): 143-162. DOI: 10.1083/jcb.201407130. | 
				                                                        
				                                                            
				                                                                | 7. | Tsuji-Tamura K, Morino-Koga S, Suzuki S, et al. The canonical smooth muscle cell marker TAGLN is present in endothelial cells and is involved in angiogenesis[J/OL]. J Cell Sci, 2021, 134(15): jcs254920[2021-08-01]. https://pubmed.ncbi.nlm.nih.gov/34338296/. DOI: 10.1242/jcs.254920. | 
				                                                        
				                                                            
				                                                                | 8. | Na BR, Kwon MS, Chae MW, et al. Transgelin-2 in B-cells controls T-cell activation by stabilizing T cell - B cell conjugates[J/OL]. PLoS One, 2016, 11(5): e0156429[2016-05-27]. https://pubmed.ncbi.nlm.nih.gov/27232882/. DOI: 10.1371/journal.pone.0156429. | 
				                                                        
				                                                            
				                                                                | 9. | Kim HR, Lee HS, Lee KS, et al. An essential role for TAGLN2 in phagocytosis of lipopolysaccharide-activated macrophages[J/OL]. Sci Rep, 2017, 7(1): 8731[2017-08-18]. https://pubmed.ncbi.nlm.nih.gov/28821818/. DOI: 10.1038/s41598-017-09144-x. | 
				                                                        
				                                                            
				                                                                | 10. | Kim HR, Park JS, Park JH, et al. Cell-permeable transgelin-2 as a potent therapeutic for dendritic cell-based cancer immunotherapy[J]. J Hematol Oncol, 2021, 14(1): 43. DOI: 10.1186/s13045-021-01058-6. | 
				                                                        
				                                                            
				                                                                | 11. | 杨琪翔, 史平玲, 卢聪, 等. 光感受器661细胞系早期低氧损伤转录组测序的生物信息学分析[J]. 中华眼底病杂志, 2021, 37(3): 214-223. DOI: 10.3760/cma.j.cn511434-20201009-00483.Yang QX, Shi PL, Lu C, et al. Bioinformatics analysis of transcriptome sequencing of early hypoxia damage in photoreceptor 661W cell line[J]. Chin J Ocul Fundus Dis, 2021, 37(3): 214-223. DOI: 10.3760/cma.j.cn511434-20201009-00483. | 
				                                                        
				                                                            
				                                                                | 12. | Liu Y, Xiao J, Zhao Y, et al. microRNA-216a protects against human retinal microvascular endothelial cell injury in diabetic retinopathy by suppressing the NOS2/JAK/STAT axis[J/OL]. Exp Mol Pathol, 2020, 115(1): 104445[2020-04-23]. https://pubmed.ncbi.nlm.nih.gov/32335083/. DOI: 10.1016/j.yexmp.2020.104445. | 
				                                                        
				                                                            
				                                                                | 13. | Chen M, Lv H, Gan J, et al. Tang Wang Ming Mu Granule attenuates diabetic retinopathy in type 2 diabetes rats[J/OL]. Front Physiol, 2017, 8(1): 1065[2017-12-19]. https://pubmed.ncbi.nlm.nih.gov/29311988/. DOI: 10.3389/fphys.2017.01065. | 
				                                                        
				                                                            
				                                                                | 14. | Dai X, Thiagarajan D, Fang J, et al. SM22α suppresses cytokine-induced inflammation and the transcription of NF-κB inducing kinase (Nik) by modulating SRF transcriptional activity in vascular smooth muscle cells[J/OL]. PloS One, 2017, 12(12): e0190191[2017-12-28]. https://pubmed.ncbi.nlm.nih.gov/29284006/. DOI: 10.1371/journal.pone.0190191. | 
				                                                        
				                                                            
				                                                                | 15. | Reimann M, Schrezenmeier J, Richter-Pechanska P, et al. Adaptive T-cell immunity controls senescence-prone MyD88- or CARD11-mutant B-cell lymphomas[J]. Blood, 2021, 137(20): 2785-2799. DOI: 10.1182/blood.2020005244. | 
				                                                        
				                                                            
				                                                                | 16. | Wang H, Zhao J, Zhang H, et al. CARD11 blockade suppresses murine collagen-induced arthritis via inhibiting CARD11/Bcl10 assembly and T helper type 17 response[J]. Clin Exp Immunol, 2014, 176(2): 238-245. DOI: 10.1111/cei.12275. | 
				                                                        
				                                                            
				                                                                | 17. | Hawiger D, Tran E, Du W, et al. ICOS mediates the development of insulin-dependent diabetes mellitus in nonobese diabetic mice[J]. J Immunol, 2008, 180(5): 3140-3147. DOI: 10.4049/jimmunol.180.5.3140. | 
				                                                        
				                                                            
				                                                                | 18. | Kornete M, Sgouroudis E, Piccirillo CA. ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice[J]. J Immunol, 2012, 188(3): 1064-1074. DOI: 10.4049/jimmunol.1101303. | 
				                                                        
				                                                            
				                                                                | 19. | Maeda S, Fujimoto M, Matsushita T, et al. Inducible costimulator (ICOS) and ICOS ligand signaling has pivotal roles in skin wound healing via cytokine production[J]. Am J Pathol, 2011, 179(5): 2360-2369. DOI: 10.1016/j.ajpath.2011.07.048. | 
				                                                        
				                                                            
				                                                                | 20. | Pires S, Jacquet R, Parker D. Inducible costimulator contributes to methicillin-resistant staphylococcus aureus pneumonia[J]. J Infect Dis, 2018, 218(4): 659-668. DOI: 10.1093/infdis/jix664. | 
				                                                        
				                                                            
				                                                                | 21. | Kai Y, Tomoda K, Yoneyama H, et al. RNA interference targeting carbohydrate sulfotransferase 3 diminishes macrophage accumulation, inhibits MMP-9 expression and promotes lung recovery in murine pulmonary emphysema[J]. Respir Res, 2015, 16(1): 146. DOI: 10.1186/s12931-015-0310-7. | 
				                                                        
				                                                            
				                                                                | 22. | Harden JL, Lewis SM, Lish SR, et al. The tryptophan metabolism enzyme L-kynureninase is a novel inflammatory factor in psoriasis and other inflammatory diseases[J]. J Allergy Clin Immunol, 2016, 137(6): 1830-1840. DOI: 10.1016/j.jaci.2015.09.055. | 
				                                                        
				                                                            
				                                                                | 23. | O'farrell K, Fagan E, Connor TJ, et al. Inhibition of the kynurenine pathway protects against reactive microglial-associated reductions in the complexity of primary cortical neurons[J]. Eur J Pharmacol, 2017, 810(1): 163-173. DOI: 10.1016/j.ejphar.2017.07.008. |