1. |
Verkruysse W, Svaasand L O, Nelson J S. Remote plethysmographic imaging using ambient light. Opt Express, 2008, 16(26): 21434-21445.
|
2. |
牛雪松, 韩琥, 山世光. 基于rPPG的生理指标测量方法综述. 中国图象图形学报, 2020, 25(11): 2321-2336.
|
3. |
De Haan G, Jeanne V. Robust pulse rate from chrominance-based rPPG. IEEE Trans Biomed Eng, 2013, 60(10): 2878-2886.
|
4. |
Poh M Z, McDuff D J, Picard R W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt Express, 2010, 18(10): 10762-10774.
|
5. |
Manzone T A, Dam H Q, Soltis D, et al. Blood volume analysis: A new technique and new clinical interest reinvigorate a classic study. J Nucl Med Technol, 2007, 35(2): 55-63.
|
6. |
Balakrishnan G, Durand F, Guttag J V. Detecting pulse from head motions in video// 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland: IEEE, 2013: 3430-3437.
|
7. |
Wang W, den Brinker A C, Stuijk S, et al. Algorithmic principles of remote PPG. IEEE Trans Biomed Eng, 2017, 64(7): 1479-1491.
|
8. |
Chen W V, McDuff D J. DeepPhys: Video-based physiological measurement using convolutional attention networks// European conference on computer vision (ECCV). Munich: ECCV, 2018: 349-365.
|
9. |
Jaiswal K B, Meenpal T. rPPG-FuseNet: Non-contact heart rate estimation from facial video via RGB/MSR signal fusion. Biomed Signal Proces, 2022, 78: 104002.
|
10. |
Yu Z, Li X, Niu X, et al. AutoHR: A strong end-to-end baseline for remote heart rate measurement with neural searching. IEEE Signal Process Lett, 2020, 27: 1245-1249.
|
11. |
Niu X, Yu Z, Han H, et al. Video-based remote physiological measurement via cross-verified feature disentangling// 2020 16th European Conference on Computer Vision (ECCV). Glasgow: Springer International, 2020: 295-310.
|
12. |
Perepelkina O S, Artemyev M, Churikova M, et al. HeartTrack: Convolutional neural network for remote video-based heart rate monitoring// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle: IEEE, 2020: 288-289.
|
13. |
Gao Haoyuan, Wu Xiaopei, Geng Jidong, et al. Remote heart rate estimation by signal quality attention network// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New Orleans: IEEE, 2022: 2121-2128.
|
14. |
Gao H, Zhang C, Pei S, et al. LSTM-based real-time signal quality assessment for blood volume pulse analysis. Biomed Opt Express, 2023, 14(3): 1119-1136.
|
15. |
Bian M, Peng B, Wang W, et al. An accurate LSTM based video heart rate estimation method// Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Xi’an: Springer International, 2019: 409-417.
|
16. |
Yu Z, Shen Y, Shi J, et al. PhysFormer: Facial video-based physiological measurement with temporal difference transformer// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 4176-4186.
|
17. |
Yu Z, Shen Y, Shi J, et al. PhysFormer++: Facial video-based physiological measurement with slowfast temporal difference transformer. Int J Comput Vision, 2023, 131(6): 1307-1330.
|
18. |
Liu L, Xia Z, Zhang X, et al. Information-enhanced network for noncontact heart rate estimation from facial videos. IEEE Trans Circuits Syst Video Technol, 2024, 34: 2136-2150.
|
19. |
Gupta A K, Kumar R, Birla L, et al. RADIANT: Better rPPG estimation using signal embeddings and Transformer// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa: IEEE, 2023: 4965-4975.
|
20. |
Du J, Liu S, Zhang B, et al. Weakly supervised rPPG estimation for respiratory rate estimation// 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montrea: IEEE, 2021: 2391-2397.
|
21. |
Li B, Zhang W, Li X, et al. ECG signal reconstruction based on facial videos via combined explicit and implicit supervision. Knowl Based Syst, 2023, 272: 110608.
|
22. |
Hasan Z, Md Faridee A Z, Ahmed M, et al. SrPPG: Semi-supervised adversarial learning for remote photoplethysmography with noisy data// 2023 IEEE International Conference on Smart Computing (SMARTCOMP). Nashville: IEEE, 2023: 25-32.
|
23. |
Wang R X, Sun H-M, Hao R R, et al. TransPhys: Transformer-based unsupervised contrastive learning for remote heart rate measurement. Biomed Signal Proces, 2023, 86: 105058.
|
24. |
Birla L, Shukla S, Gupta A K, et al. ALPINE: Improving remote heart rate estimation using contrastive learning// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV). Waikoloa: IEEE, 2023: 5018-5027.
|
25. |
Gideon J, Stent S. The way to my heart is through contrastive learning: Remote photoplethysmography from unlabelled video// 2021 IEEE/CVF International Conference on Computer Vision(ICCV). Cambridge: IEEE, 2021: 3995-4004.
|
26. |
Park S, Kim B K, Dong S Y. Self-supervised RGB-NIR fusion video vision Transformer framework for rPPG estimation. IEEE Trans Instrum Meas, 2022, 71: 1-10.
|
27. |
Speth J, Vance N, Flynn P, et al. Non-contrastive unsupervised learning of physiological signals from video// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 14464-14474.
|
28. |
Liu X, Zhang Y, Yu Z, et al. rPPG-MAE: Self-supervised pretraining with masked autoencoders for remote physiological measurements. IEEE T Multimedia, 2024, 26: 7278-7293.
|
29. |
Stricker R, Müller S, Gross H M. Non-contact video-based pulse rate measurement on a mobile service robot// The 23rd IEEE International Symposium on Robot and Human Interactive Communication. Edinburgh: IEEE, 2014: 1056-1062.
|
30. |
Tasli H E, Gudi A, Den Uyl M. Remote PPG based vital sign measurement using adaptive facial regions// 2014 IEEE International Conference on Image Processing (ICIP). Paris: IEEE, 2014: 1410-1414.
|
31. |
Tulyakov S, Alameda Pineda X, Ricci E, et al. Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2396-2404.
|
32. |
Hsu G-S J, Ambikapathi A, Chen M. Deep learning with time-frequency representation for pulse estimation from facial videos// 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver: IEEE, 2017: 383-389.
|
33. |
Heusch G, Anjos A, Marcel S. A reproducible study on remote heart rate measurement. International Workshops and Challenges. arXiv, 2017: 1709.00962.
|
34. |
Niu X, Han H, Shan S, et al. VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video// Asian Conference on Computer Vision(ACCV). Perth: Springer International, 2018: 562-576.
|
35. |
Spetlik R, Franc V, Cech J, et al. Visual heart rate estimation with convolutional neural network// British Machine Vision Conference (BMVC). Newcastle: BMVA, 2018: 3-6.
|
36. |
Li X, Alikhani I, Shi J, et al. The OBF Database: A large face video database for remote physiological signal measurement and atrial fibrillation detection// 13th IEEE International Conference on Automatic Face & Gesture Recognition. Xi’an: IEEE, 2018: 242-249.
|
37. |
Bobbia S, Macwan R, Benezeth Y, et al. Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recognit Lett, 2017, 124: 82-90.
|
38. |
Pilz C S, Zaunseder S, Krajewski J, et al. Local group invariance for heart rate estimation from face videos in the wild// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City: IEEE, 2018: 1254-1262.
|
39. |
Huang B, Chen W, Lin C-L, et al. A neonatal dataset and benchmark for non-contact neonatal heart rate monitoring based on spatio-temporal neural networks. Eng Appl Artif Intell, 2021, 106: 104447.
|
40. |
Tang J, Chen K, Wang Y, et al. MMPD: multi-domain mobile video physiology dataset// 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Sydney: IEEE, 2023: 1-5.
|
41. |
Revanur A, Li Z, Ciftci U A, et al. The first vision for vitals (V4V) challenge for non-contact video-based physiological estimation// 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montreal: IEEE, 2021: 2760-2767.
|
42. |
McDuff D J, Wander M, Liu X, et al. SCAMPS: Synthetics for camera measurement of physiological signals// 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc, 2022: 3744-3757.
|
43. |
Magdalena Nowara E, Marks T K, Mansour H, et al. SparsePPG: Towards driver monitoring using camera-based vital signs estimation in near-infrared// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City: IEEE, 2018: 1272-1281.
|
44. |
Nowara E M, Marks T K, Mansour H, et al. Near-infrared imaging photoplethysmography during driving. IEEE T Intell Transp, 2020, 23(4): 3589-3600.
|
45. |
Koelstra S, Mühl C, Soleymani M, et al. DEAP: A database for emotion analysis using physiological signals. IEEE T Affect Comput, 2012, 3: 18-31.
|
46. |
Soleymani M, Lichtenauer J, Pun T, et al. A multimodal database for affect recognition and implicit tagging. IEEE T Affect Comput, 2011, 3(1): 42-55.
|
47. |
Chen S, Wong K L, Chan T T, et al. An image enhancement based method for improving rPPG extraction under low-light illumination. Biomed Signal Proces, 2025, 100: 106963.
|