1. |
韩聪, 赵耀东, 朱玲, 等. 基于腰椎间盘退变生物力学探讨腰椎间盘突出症发病机制. 中医临床研究, 2020, 12(1): 47-50.
|
2. |
Brissenden A J, Amsden B G. In situ forming macroporous biohybrid hydrogel for nucleus pulposus cell delivery. Acta Biomaterialia, 2023, 170: 169-184.
|
3. |
Hayashi K, Suzuki A, Abdullah Ahmadi S, et al. Mechanical stress induces elastic fibre disruption and cartilage matrix increase in ligamentum flavum. Scientific Reports, 2017, 7(1): 13092.
|
4. |
Azril, Huang K Y, Hobley J, et al. Correlation of the degenerative stage of a disc with magnetic resonance imaging, chemical content, and biomechanical properties of the nucleus pulposus. Journal of Biomedical Materials Research Part A, 2023, 111(7): 1054-1066.
|
5. |
Sengul E, Ozmen R, Demir T. The effects of pre-stressed rods contoured by different bending techniques on posterior instrumentation of L4-L5 lumbar spine segment: a finite element study. Proc Inst Mech Eng H, 2022, 236(7): 960-972.
|
6. |
Yan M, Song Z, Kou H, et al. New progress in basic research of macrophages in the pathogenesis and treatment of low back pain. Frontiers in Cell and Developmental Biology, 2022, 10: 866857.
|
7. |
Bardia A, Hovnanian M D, Brachtel E F, et al. Case 35-2018: a 68-year-old woman with back pain and a remote history of breast cancer. New England Journal of Medicine, 2018, 379(20): 1946-1953.
|
8. |
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration—current therapeutic options and challenges. Frontiers in Public Health, 2023, 11: 1156749.
|
9. |
Łebkowski W J. Autopsy evaluation of the extent of degeneration of the lumbar intervertebral discs. Pol Merkur Lekarski, 2002, 13(75): 188-190.
|
10. |
Raj P P. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Practice, 2008, 8(1): 18-44.
|
11. |
Kingma I, van Dieën J H, Nicolay K, et al. Monitoring water content in deforming intervertebral disc tissue by finite element analysis of MRI data. Magnetic Resonance in Medicine, 2000, 44(4): 650-654.
|
12. |
Rohlmann A, Zander T, Schmidt H, et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. Journal of Biomechanics, 2006, 39(13): 2484-2490.
|
13. |
Park W M, Kim Y H, Lee S. Effect of intervertebral disc degeneration on biomechanical behaviors of a lumbar motion segment under physiological loading conditions. Journal of Mechanical Science and Technology, 2013, 27: 483-489.
|
14. |
Yang B, O'Connell G D. Intervertebral disc swelling maintains strain homeostasis throughout the annulus fibrosus: a finite element analysis of healthy and degenerated discs. Acta Biomaterialia, 2019, 100: 61-74.
|
15. |
Finley S M, Brodke D S, Spina N T, et al. FEBio finite element models of the human lumbar spine. Comput Methods Biomech Biomed Engin, 2018, 21(6): 444-452.
|
16. |
高旭, 邢文华. 有限元分析法在脊柱外科领域的应用. 中国组织工程研究, 2023, 27(18): 2921.
|
17. |
Liu Z, Wang H, Yuan Z, et al. High-resolution 3D printing of angle-ply annulus fibrosus scaffolds for intervertebral disc regeneration. Biofabrication, 2022, 15(1): 015015.
|
18. |
Lu Y, Xiang J, Yin B, et al. Finite element comparative analysis on treatment of lumbar disc herniation by the oblique wrench method and the combination of traction, pressing, and oblique pulling. Chinese Journal of Tissue Engineering Research, 2023, 27(13): 2011.
|
19. |
Heo M, Park S. Biphasic properties of PVAH (polyvinyl alcohol hydrogel) reflecting biomechanical behavior of the nucleus pulposus of the human intervertebral disc. Materials, 2022, 15(3): 1125.
|
20. |
Zhou M, Huff R D, Abubakr Y, et al. Torque-and muscle-driven flexion induce disparate risks of in vitro herniation: a multiscale and multiphasic structure-based finite element study. J Biomech Eng, 2022, 144(6): 061005.
|
21. |
Iatridis J C, Setton L A, Foster R J, et al. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. Journal of Biomechanics, 1998, 31(6): 535-544.
|
22. |
Johannessen W, Elliott D M. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine, 2005, 30(24): E724-E729.
|
23. |
Natarajan R N, Williams J R, Andersson G B. Recent advances in analytical modeling of lumbar disc degeneration. Spine, 2004, 29(23): 2733-2741.
|
24. |
Iatridis J C, Setton L A, Weidenbaum M, et al. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. Journal of Orthopaedic Research, 1997, 15(2): 318-322.
|
25. |
Iatridis J C, Weidenbaum M, Setton L A, et al. Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine, 1996, 21(10): 1174-1184.
|
26. |
Ateshian G A, Rajan V, Chahine N O, et al. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng, 2009, 131(6): 061003.
|
27. |
Holmes M H, Mow V C. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. Journal of Biomechanics, 1990, 23(11): 1145-1156.
|
28. |
Pintar F A, Yoganandan N, Myers T, et al. Biomechanical properties of human lumbar spine ligaments. Journal of biomechanics, 1992, 25(11): 1351-1356.
|
29. |
Wilke H J, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine, 1999, 24(8): 755-762.
|
30. |
Dreischarf M, Zander T, Shirazi-Adl A, et al. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. Journal of Biomechanics, 2014, 47(8): 1757-1766.
|
31. |
Rohlmann A, Neller S, Claes L, et al. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine, 2001, 26(24): E557-E561.
|
32. |
Woldtvedt D J, Womack W, Gadomski B C, et al. Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size. J Biomech Eng, 2011, 133(6): 061009.
|
33. |
林伟健, 李俊言, 陈瑱贤, 等. 正常和早期膝骨关节炎的软骨生物力学研究. 力学学报, 2021, 53(11): 3147-3156.
|
34. |
Ateshian G A, Maas S, Weiss J A. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding. J Biomech Eng, 2010, 132(6): 061006.
|
35. |
Zimmerman B K, Maas S A, Weiss J A, et al. A finite element algorithm for large deformation biphasic frictional contact between porous-permeable hydrated soft tissues. J Biomech Eng, 2022, 144(2): 021008.
|
36. |
Sun Z, Sun Y, Lu T, et al. A swelling-based biphasic analysis on the quasi-static biomechanical behaviors of healthy and degenerative intervertebral discs. Comput Methods Programs Biomed, 2023, 235: 107513.
|