1. |
国家康复辅具研究中心. 我国假肢与矫形器行业的历史、现状、展望. 北京: 国家康复辅具研究中心, 2021.
|
2. |
Molina C S, Faulk J. Lower eextremity aamputation. Treasure Island: StatPearls Publishing, 2020.
|
3. |
Vollmar J, Pauschinger P, Paes E, et al. Aortic aneurysms as late sequelae of above-knee amputation. Lancet, 1989, 334(8667): 834-835.
|
4. |
Stewart C, Jain A. Cause of death of lower limb amputees. Prosthet Orthot Int, 1992, 16(2): 129-132.
|
5. |
Modan M, Peles E, Halkin H, et al. Increased cardiovascular disease mortality rates in traumatic lower limb amputees. Am J Cardiol, 1998, 82(10): 1242-1247.
|
6. |
Nallegowda M, Lee E, Brandstater M, et al. Amputation and cardiac comorbidity: analysis of severity of cardiac risk. PM R, 2012, 4(9): 657-666.
|
7. |
Liao F Y, Garrison D W, Jan Y K. Relationship between nonlinear properties of sacral skin blood flow oscillations and vasodilatory function in people at risk for pressure ulcers. Microvasc Res, 2010, 80(1): 44-53.
|
8. |
刁珺杰, 蒋文涛, 李忠友, 等. 下肢截肢患者心血管系统集中参数模型的血流动力学数值研究. 工程力学, 2023, 40(4): 233-242.
|
9. |
Dong R Q, Jiang W T, Zhang M, et al. Hemodynamic studies for lower limb amputation and rehabilitation. J Mech Med Biol, 2015, 15(4): 1530005.
|
10. |
Reneman R S, Arts T, Hoeks A P. Wall shear stress-an important determinant of endothelial cell function and structure-in the arterial system in vivo: discrepancies with theory. J Vasc Res, 2006, 43(3): 251-269.
|
11. |
Pietrabissa R, Mantero S, Marotta T, et al. A lumped parameter model to evaluate the fluid dynamics of different coronary bypasses. Med Eng Phys, 1996, 18(6): 477-484.
|
12. |
Rehman S, Khan A, Rehman A, et al. Physiology, coronary circulation. Treasure Island: StatPearls Publishing, 2023.
|
13. |
Dong J L, Sun Z H, Inthavong K, et al. Fluid-structure interaction analysis of the left coronary artery with variable angulation. Comput Methods Biomech Biomed Eng, 2015, 18(14): 1500-1508.
|
14. |
Chaichana T, Sun Z, Jewkes J. Computation of hemodynamics in the left coronary artery with variable angulations. J Biomech, 2011, 44(10): 1869-1878.
|
15. |
Nomura T, Lebowitz L, Koide Y, et al. Evaluation of hepatic venous flow using transesophageal echocardiography in coronary artery bypass surgery: an index of right ventricular function. J Cardiothorac Vasc Anesth, 1995, 9(1): 9-17.
|
16. |
Müller L O, Toro E F. A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int J Numer Method Biomed Eng, 2014, 30(7): 681-725.
|
17. |
Li Z Y, Jiang W T, Diao J J, et al. Segmentary strategy in modeling of cardiovascular system with blood supply to regional skin. Biocybern Biomed Eng, 2021, 41(4): 1505-1517.
|
18. |
Kim H J, Vignon-Clementel I, Coogan J, et al. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng, 2010, 38(10): 3195-3209.
|
19. |
Soulis J V, Farmakis T M, Giannoglou G D, et al. Wall shear stress in normal left coronary artery tree. J Biomech, 2006, 39(4): 742-749.
|
20. |
李鲍. 基于血流动力学效应优化的体外反搏个性化治疗策略研究. 北京: 北京工业大学, 2021.
|
21. |
Poredos P, Poredos A V, Gregoric I. Endothelial dysfunction and its clinical implications. Angiology, 2021, 72(7): 604-615.
|
22. |
Ku D N, Giddens D P, Zarins C K, et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis, 1985, 5(3): 293-302.
|
23. |
Karner G, Perktold K, Hofer M, et al. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Comput Methods Biomech Biomed Eng, 1999, 2(3): 171-185.
|
24. |
Katritsis D, Kaiktsis L, Chaniotis A, et al. Wall shear stress: theoretical considerations and methods of measurement. Prog Cardiovasc Dis, 2007, 49(5): 307-329.
|
25. |
Friedman M, Deters O. Correlation among shear rate measures in vascular flows. J Biomech Eng, 1987, 109(1): 25-26.
|
26. |
Nordgaard H, Swillens A, Nordhaug D, et al. Impact of competitive flow on wall shear stress in coronary surgery: computational fluid dynamics of a LIMA-LAD model. Cardiovasc Res, 2010, 88(3): 512-519.
|
27. |
Braun J, Oldendorf M, Moshage W, et al. Electron beam computed tomography in the evaluation of cardiac calcifications in chronic dialysis patients. Am J Kidney Dis, 1996, 27(3): 394-401.
|
28. |
Goodman W G, Goldin J, Kuizon B D, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med, 2000, 342(20): 1478-1483.
|
29. |
Avolio A P. Multi-branched model of the human arterial system. Med Biol Eng Comput, 1980, 18(6): 709-718.
|
30. |
Bader H. Dependence of wall stress in the human thoracic aorta on age and pressure. Circ Res, 1967, 20(3): 354-361.
|
31. |
Kannel W B. Contributions of the Framingham Study to the conquest of coronary artery disease. Am J Cardiol, 1988, 62(16): 1109-1112.
|
32. |
Witteman J C, Grobbee D E, Valkenburg H A, et al. J-shaped relation between change in diastolic blood pressure and progression of aortic atherosclerosis. Lancet, 1994, 343(8896): 504-507.
|
33. |
Malek A M, Alper S L, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA, 1999, 282(21): 2035-2042.
|
34. |
Zarins C K, Giddens D P, Bharadvaj B, et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res, 1983, 53(4): 502-514.
|
35. |
Caro C, Fitz-Gerald J, Schroter R. Arterial wall shear and distribution of early atheroma in man. Nature, 1969, 223(5211): 1159-1161.
|
36. |
Friedman M H, Hutchins G M, Bargeron C B, et al. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis, 1981, 39(3): 425-436.
|
37. |
Fard B, Dijkstra P U, Voesten H G, et al. Mortality, reamputation, and preoperative comorbidities in patients undergoing dysvascular lower limb amputation. Ann Vasc Surg, 2020, 64: 228-238.
|
38. |
Hoffstad O, Mitra N, Walsh J, et al. Diabetes, lower-extremity amputation, and death. Diabetes Care, 2015, 38(10): 1852-1857.
|
39. |
Marcus J T, Smeenk H G, Kuijer J P, et al. Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr, 1999, 23(4): 567-576.
|