1. |
Camm A J, Naccarelli G V, Mittal S, et al. The increasing role of rhythm control in patients with atrial fibrillation: JACC state-of-the-art review. J Am Coll Cardiol, 2022, 79(19): 1932-1948.
|
2. |
Guo Y, Wang H, Zhang H, et al. Mobile photoplethysmographic technology to detect atrial fibrillation. J Am Coll Cardiol, 2019, 74(19): 2365-2375.
|
3. |
Kuniss M, Pavlovic N, Velagic V, et al. Cryoballoon ablation vs. antiarrhythmic drugs: first-line therapy for patients with paroxysmal atrial fibrillation. EP Europace, 2021, 23(7): 1033-1041.
|
4. |
Al-Khatib S M, Wilkinson W E, Sanders L L, et al. Observations on the transition from intermittent to permanent atrial fibrillation. Am Heart J, 2000, 140(1): 142-145.
|
5. |
Schnabel R B, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet, 2015, 386(9989): 154-162.
|
6. |
German D M, Kabir M M, Dewland T A, et al. Atrial fibrillation predictors: importance of the electrocardiogram. Ann Noninvas Electro, 2016, 21(1): 20-29.
|
7. |
Pipilas D, Friedman S F, Khurshid S. The use of artificial intelligence to predict the development of atrial fibrillation. Curr Cardiol Rep, 2023, 25(5): 381-389.
|
8. |
Moody G B, Goldberger A L, Mcclennen S, et al. Predicting the onset of paroxysmal atrial fibrillation: the Computers in Cardiology Challenge 2001// Computers in Cardiology 2001. Rotterdam: IEEE, 2001: 113-116.
|
9. |
Zong W, Mukkamala R, Mark R G. A methodology for predicting paroxysmal atrial fibrillation based on ECG arrhythmia feature analysis// Computers in Cardiology 2001. Rotterdam: IEEE, 2001: 125-128.
|
10. |
Thong T, McNames J, Aboy M, et al. Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes. IEEE T Bio-Med Eng, 2004, 51(4): 561-569.
|
11. |
Thong T, McNames J, Aboy M, et al. Paroxysmal atrial fibrillation prediction using isolated premature atrial events and paroxysmal atrial tachycardia// Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Cancun: IEEE, 2003: 163-166.
|
12. |
Hickey B, Heneghan C. Screening for paroxysmal atrial fibrillation using atrial premature contractions and spectral measures// Computers in Cardiology 2002. Memphis: IEEE, 2002: 217-220.
|
13. |
De Chazal P, Heneghan C. Automated assessment of atrial fibrillation// Computers in Cardiology 2001. Rotterdam: IEEE, 2001: 117-120.
|
14. |
Boon K H, Khalil-Hani M, Malarvili M B, et al. Paroxysmal atrial fibrillation prediction method with shorter HRV sequences. Comput Meth Prog Bio, 2016, 134: 187-196.
|
15. |
Boon K H, Khalil-Hani M, Malarvili M B. Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III. Comput Meth Prog Bio, 2018, 153: 171-184.
|
16. |
Mohebbi M, Ghassemian H. Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. Comput Meth Prog Bio, 2012, 105(1): 40-49.
|
17. |
Narin A, Isler Y, Ozer M, et al. Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability. Physica A, 2018, 509: 56-65.
|
18. |
兰天杰, 杨翠微. 基于RR间期的阵发性房颤复发预测. 生物医学工程学杂志, 2019, 36(4): 521-530.
|
19. |
Sutton J R, Mahajan R, Akbilgic O, et al. PhysOnline: an open source machine learning pipeline for real-time analysis of streaming physiological waveform. IEEE J Biomed Health, 2018, 23(1): 59-65.
|
20. |
Mendez M M, Hsu M C, Yuan J T, et al. A heart rate variability-based paroxysmal atrial fibrillation prediction system. Appl Sci-Basel, 2022, 12(5): 2387.
|
21. |
Erdenebayar U, Kim H, Park J U, et al. Automatic prediction of atrial fibrillation based on convolutional neural network using a short-term normal electrocardiogram signal. J Korean Med Sci, 2019, 34(7): e64.
|
22. |
Attia Z I, Noseworthy P A, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet, 2019, 394(10201): 861-867.
|
23. |
杨萍, 王丹, 康子健, 等. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型. 浙江大学学报(工学版), 2020, 54(5): 1039-1048.
|
24. |
Li M, He G, Zhu B. Atrial fibrillation detection based on the combination of depth and statistical features of ECG// Proceedings of the 3rd International Conference on Graphics and Signal Processing. Hong Kong: ACM, 2019: 105-112.
|
25. |
Ma C, Wei S, Chen T, et al. Integration of results from convolutional neural network in a support vector machine for the detection of atrial fibrillation. IEEE T Instrum Meas, 2020, 70: 1-10.
|
26. |
Li H, Wang X, Liu C, et al. Dual-input neural network integrating feature extraction and deep learning for coronary artery disease detection using electrocardiogram and phonocardiogram. IEEE Access, 2019, 7: 146457-146469.
|
27. |
Ghosh S K, Ponnalagu R N. Investigation of discrete wavelet transform domain optimal parametric approach for denoising of phonocardiogram signal. J Mech Med Biol, 2022, 22(6): 2250046.
|
28. |
Ahmad Z, Tabassum A, Guan L, et al. ECG heartbeat classification using multimodal fusion. IEEE Access, 2021, 9: 100615-100626.
|
29. |
Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE T Pattern Anal, 2005, 27(8): 1226-1238.
|
30. |
Liu H, Setiono R. Chi2: Feature selection and discretization of numeric attributes// Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence. Herndon: IEEE, 1995: 388-391.
|
31. |
Spolaôr N, Cherman E A, Monard M C, et al. ReliefF for multi-label feature selection// 2013 Brazilian Conference on Intelligent Systems. Fortaleza: IEEE, 2013: 6-11.
|
32. |
Ali Khan S, Hussain A, Basit A, et al. Kruskal-Wallis-based computationally efficient feature selection for face recognition. Sci World J, 2014, 2014: 672630.
|