1. |
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018. 中华神经科杂志, 2018, 51(9): 666-682.
|
2. |
Nagaraja N. Diffusion weighted imaging in acute ischemic stroke: A review of its interpretation pitfalls and advanced diffusion imaging application. J Neurol Sci, 2021, 425: 117435.
|
3. |
Dill T. Contraindications to magnetic resonance imaging. Heart, 2008, 94(7): 943-948.
|
4. |
Oliveri S, Pricolo P, Pizzoli S, et al. Investigating cancer patient acceptance of Whole Body MRI. Clin Imaging, 2018, 52: 246-251.
|
5. |
靳志嘉, 李彦, 陆勇, 等. 医用磁共振成像设备临床需求调研及发展趋势分析. 磁共振成像, 2019, 10(2): 96-100.
|
6. |
Li W, Li Y, Qin W, et al. Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy. Quant Imag Med Surg, 2020, 10(6): 1223.
|
7. |
Hu N, Zhang T, Wu Y, et al. Detecting brain lesions in suspected acute ischemic stroke with CT-based synthetic MRI using generative adversarial networks. Ann Transl Med, 2022, 10(2): 35.
|
8. |
Jiang J, Hu Y-C, Tyagi N, et al. Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation// Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference. Granada: MICCAI, 2018: 777-785.
|
9. |
Jin C-B, Kim H, Liu M, et al. Deep CT to MR synthesis using paired and unpaired data. Sensors, 2019, 19(10): 2361.
|
10. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv, 2020: 2010.11929.
|
11. |
Tragakis A, Kaul C, Murray-Smith R, et al. The fully convolutional transformer for medical image segmentation// IEEE Workshop on Applications of Computer Vision (WACV). Waikoloa: WACV, 2023: 3660-3669.
|
12. |
Cai Z, Ding X, Shen Q, et al. Refconv: Re-parameterized refocusing convolution for powerful convnets. arXiv preprint arXiv, 2023: 2310.10563.
|
13. |
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE T Image Process, 2004, 13(4): 600-612.
|
14. |
Avanaki A N. Exact global histogram specification optimized for structural similarity. Opt Rev, 2009, 16: 613-621.
|
15. |
Isola P, Zhu J-Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: CVPR, 2017: 1125-1134.
|
16. |
Dalmaz O, Yurt M, Çukur T. ResViT: residual vision transformers for multimodal medical image synthesis. IEEE T Med Imaging, 2022, 41(10): 2598-2614.
|
17. |
Zhu J-Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks// 2017 IEEE International Conference on Computer Vision. Venice: ICCV, 2017: 2223-2232.
|
18. |
Luo Y, Zhou L, Zhan B, et al. Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis. Med Image Anal, 2022, 77: 102335.
|
19. |
Liu Y, Chen A, Shi H, et al. CT synthesis from MRI using multi-cycle GAN for head-and-neck radiation therapy. Comput Med Imag Grap, 2021, 91: 101953.
|
20. |
De Bel T, Bokhorst J-M, Van Der Laak J, et al. Residual cyclegan for robust domain transformation of histopathological tissue slides. Med Image Anal, 2021, 70: 102004.
|
21. |
Kalantar R, Messiou C, Winfield J M, et al. CT-based pelvic T1-weighted MR image synthesis using UNet, UNet++ and cycle-consistent generative adversarial network (Cycle-GAN). Front Oncol, 2021, 11: 665807.
|
22. |
Feng E, Qin P, Chai R, et al. MRI generated from CT for acute ischemic stroke combining radiomics and generative adversarial networks. IEEE J Biomed Health, 2022, 26(12): 6047-6057.
|
23. |
Nie D, Trullo R, Lian J, et al. Medical image synthesis with context-aware generative adversarial networks// Medical Image Computing and Computer Assisted Intervention− MICCAI 2017: 20th International Conference. Quebec City: MICCAI, 2017: 417-425.
|
24. |
Yang H, Sun J, Carass A, et al. Unsupervised MR-to-CT synthesis using structure-constrained CycleGAN. IEEE T Med Imaging, 2020, 39(12): 4249-4261.
|
25. |
Armanious K, Jiang C, Fischer M, et al. MedGAN: Medical image translation using GANs. Comput Med Imag Grap, 2020, 79: 101684.
|
26. |
Wu H, Xiao B, Codella N, et al. Cvt: Introducing convolutions to vision transformers// 2021 IEEE/CVF International Conference on Computer Vision. Montreal: ICCV, 2021: 22-31.
|
27. |
Guo J, Han K, Wu H, et al. CMT: Convolutional neural networks meet vision transformers// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: CVPR, 2022: 12175-12185.
|
28. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// Advances in Neural Information Processing Systems. Long Beach: NeurlPS, 2017: 30.
|
29. |
Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv, 2021: 2102.04306.
|
30. |
Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation// European Conference on Computer Vision. Tel Aviv: ECCV, 2022: 205-218.
|
31. |
Nie D, Shen D. Adversarial confidence learning for medical image segmentation and synthesis. Int J Comput Vision, 2020, 128(10): 2494-2513.
|
32. |
Augustin M, Bammer R, Simbrunner J, et al. Diffusion-weighted imaging of patients with subacute cerebral ischemia: comparison with conventional and contrast-enhanced MR imaging. Am J Neuroradiol, 2000, 21(9): 1596-1602.
|