1. |
Carney C, Mcgehee D, Harland K, et al. Using naturalistic driving data to assess the prevalence of environmental factors and driver behaviors in teen driver crashes. CompetitionPolicy Newsletter, 2015, 18(2): 48-52.
|
2. |
Hu X Y, Lodewijks G. Exploration of the effects of task-related fatigue on eye-motion features and its value in improving driver fatigue-related technology. Transportation Research PartF: Traffic Psychology and Behaviour, 2021, 80: 150-171.
|
3. |
Halomoan J, Ramli K, Sudiana D, et al. ECG-based driving fatigue detection using heart rate variability analysis with mutual information. Information, 2023, 14(10): 22-34.
|
4. |
Pei Z, Wang H T, Bezerianos A, et al. EEG-based multiclass workload identification using feature fusion and selection. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-8.
|
5. |
Schmidt E M, McIntosh J S, Durelli L, et al. Fine control of operantly conditioned firing patterns of cortical- neurons. Experimental Neurology, 1978, 61(2): 349-369.
|
6. |
Chuang C H, Pei L C, Li W K et al. Driver’s cognitive state classification toward brain computer interface via using a generalized and supervised technology//The 2010 International Joint Conference on Neural Networks (IJCNN). NewYork: IEEE, 2010: 1-7.
|
7. |
杨慧舟, 刘云飞, 夏丽娟. 前额单通道脑电信号的疲劳特征提取及分类算法. 生物医学工程学杂志, 2024, 41(4): 732-741.
|
8. |
龚子安, 顾正晖, 陈迪. 基于局部与全局特征集成网络的跨被试驾驶疲劳检测. 计算机科学, 2024: 1-20.
|
9. |
Chai R, Naik G R, Nguyen T N, et al. Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE Journal of Biomedical and Health Informatics, 2017, 21(3): 715-724.
|
10. |
Zhang X, Lu D, Pan J, et al. Fatigue detection with covariance manifolds of electroencephalography in transportation industry. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3497-3507.
|
11. |
耿欣. 基于小波变换和神经网络的疲劳驾驶检测技术的研究. 沈阳: 东北大学, 2012.
|
12. |
冯笑, 代少升, 黄炼. 基于可解释深度学习的单通道脑电跨受试者疲劳驾驶检测. 仪器仪表学报, 2023, 44(5): 140-149.
|
13. |
Yeo B T, Krienen F M, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 2011, 106(3): 1125-1165.
|
14. |
Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
|
15. |
Zhong P, Wang D, Miao C. EEG-based emotion recognition using regularized graph neural networks. IEEE Transactions on Affective Computing, 2020, 13(3): 1290-1301.
|
16. |
Hou Y, Jia S, Lun X, et al. GCNs-Net: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals. IEEE Transaction on Neural Networks and Learning Systems, 2024, 35(6): 7312-7323.
|
17. |
Zheng W L, Lu B L. A multimodal approach to estimating vigilance using EEG and forehead EOG. Journal of Neural Engineering, 2017, 14(2): 026017.
|
18. |
柳长源, 李文强, 毕晓君. 基于RCNN-LSTM 的脑电情感识别研究. 自动化学报, 2022, 48(3): 917-925.
|