1. |
Longo UG, Carnevale A, Piergentili I, et al. Retear rates after rotator cuff surgery: a systematic review and meta-analysis. BMC Musculoskelet Disord, 2021, 22(1): 749. doi: 10.1186/s12891-021-04634-6.
|
2. |
Villarreal-Villarreal GA, Simental-Mendía M, Garza-Borjón AE, et al. Double-row rotator cuff repair enhanced with platelet-rich therapy reduces retear rate: A systematic review and meta-analysis of randomized controlled trials. Arthroscopy, 2021, 37(6): 1937-1947.
|
3. |
Bedi A, Bishop J, Keener J, et al. Rotator cuff tears. Nat Rev Dis Primers, 2024, 10(1): 8. doi: 10.1038/s41572-024-00492-3.
|
4. |
Heilig P, Jordan MC, Paul MM, et al. Augmentation of suture anchors with magnesium phosphate cement - Simple technique with striking effect. J Mech Behav Biomed Mater, 2022, 128: 105096. doi: 10.1016/j.jmbbm.2022.105096.
|
5. |
Cobaleda Aristizabal AF, Sanders EJ, Barber FA. Adverse events associated with biodegradable lactide-containing suture anchors. Arthroscopy, 2014, 30(5): 555-560.
|
6. |
吴雨宽, 白浪, 刘妍兰, 等. 镁及镁合金植入物在运动医学中的应用研究进展. 中国修复重建外科杂志, 2024, 38(3): 380-386.
|
7. |
Karunakaran R, Ortgies S, Tamayol A, et al. Additive manufacturing of magnesium alloys. Bioact Mater, 2020, 5(1): 44-54.
|
8. |
Puccetti M, Cusati E, Antognelli C, et al. Ketorolac loaded poly(lactic-co-glycolic acid) coating of AZ31 in the treatment of bone fracture pain. Polymers (Basel), 2023, 15(10): 2246. doi: 10.3390/polym15102246.
|
9. |
Zhang B, Zhang W, Zhang F, et al. Degradable magnesium alloy suture promotes fibrocartilaginous interface regeneration in a rat rotator cuff transosseous repair model. Journal of Magnesium and Alloys, 2024, 12(1): 384-393.
|
10. |
He X, Li Y, Zou D, et al. An overview of magnesium-based implants in orthopaedics and a prospect of its application in spine fusion. Bioact Mater, 2024, 39: 456-478.
|
11. |
Zhang W, Sheng X, Zhang B, et al. A novel design magnesium alloy suture anchor promotes fibrocartilaginous enthesis regeneration in rabbit rotator cuff repair. Journal of Magnesium and Alloys, 2024. doi:10.1016/j.jma.2024.08.002.
|
12. |
Iwahashi T, Shino K, Nakata K, et al. Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy, 2010, 26(9 Suppl): S13-S20.
|
13. |
Zhang X, Ma J, Hu H, et al. Engineered metallic ion-based hydrogel for tendon-bone reconstruction. ACS Appl Mater Interfaces, 2024, 16(6): 6837-6848.
|
14. |
Bai L, Kasimu A, Wang S, et al. Electrohydrodynamic-printed dual-triphase microfibrous scaffolds reshaping the lipidomic profile for enthesis healing in a rat rotator cuff repair model. Small, 2024. doi: 10.1002/smll.202406069.
|
15. |
Zhao Q, Ni Y, Wei H, et al. Ion incorporation into bone grafting materials. Periodontol 2000, 2024, 94(1): 213-230.
|
16. |
Zhang E, Zhao X, Hu J, et al. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater, 2021, 6(8): 2569-2612.
|
17. |
Canales DA, Reyes F, Saavedra M, et al. Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration. Int J Biol Macromol, 2022, 210: 324-336.
|
18. |
Nan M, Yangmei C, Bangcheng Y. Magnesium metal—a potential biomaterial with antibone cancer properties. J Biomed Mater Res A, 2014, 102(8): 2644-2651.
|
19. |
He X, Li Y, Miao H, et al. High formability Mg-Zn-Gd wire facilitates ACL reconstruction via its swift degradation to accelerate intra-tunnel endochondral ossification. Journal of Magnesium and Alloys, 2024, 12(1): 295-315.
|
20. |
Chen F, Liang Q, Mao L, et al. Synergy effects of Asperosaponin Ⅵ and bioactive factor BMP-2 on osteogenesis and anti-osteoclastogenesis. Bioact Mater, 2021, 10: 335-344.
|
21. |
Pugliese E, Sallent I, Ribeiro S, et al. Development of three-layer collagen scaffolds to spatially direct tissue-specific cell differentiation for enthesis repair. Mater Today Bio, 2023, 19: 100584. doi: 10.1016/j.mtbio.2023.100584.
|
22. |
Ding T, Kang W, Li J, et al. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J Nanobiotechnology, 2021, 19(1): 247. doi: 10.1186/s12951-021-00992-4.
|
23. |
Hashimoto Y, Yoshida G, Toyoda H, et al. Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. J Orthop Res, 2007, 25(11): 1415-1424.
|
24. |
Kim JG, Kim HJ, Kim SE, et al. Enhancement of tendon-bone healing with the use of bone morphogenetic protein-2 inserted into the suture anchor hole in a rabbit patellar tendon model. Cytotherapy, 2014, 16(6): 857-867.
|
25. |
Rodeo SA. Biologic augmentation of rotator cuff tendon repair. J Shoulder Elbow Surg, 2007, 16(5 Suppl): S191-S197.
|
26. |
杜志坡, 廖婕, 王冰冰, 等. 细胞来源脱细胞外基质用作组织工程支架的优势与展望. 中国修复重建外科杂志, 2024, 38(11): 1291-1298.
|
27. |
Li J, Ke H, Lei X, et al. Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing. Bioact Mater, 2024, 36: 62-82.
|
28. |
Cai Z, Liu X, Hu M, et al. In situ enzymatic reaction generates magnesium-based mineralized microspheres with superior bioactivity for enhanced bone regeneration. Adv Healthc Mater, 2023, 12(24): e2300727. doi: 10.1002/adhm.202300727.
|
29. |
Sun Y, Liu H, Sun XY, et al. In vitro and in vivo study on the osseointegration of magnesium and strontium ion with two different proportions of mineralized collagen and its mechanism. J Biomater Appl, 2021, 36(3): 528-540.
|
30. |
Zhang X, Zu H, Zhao D, et al. Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater, 2017, 63: 369-382.
|
31. |
Wang Z, Wang X, Pei J, et al. Degradation and osteogenic induction of a SrHPO4-coated Mg-Nd-Zn-Zr alloy intramedullary nail in a rat femoral shaft fracture model. Biomaterials, 2020, 247: 119962. doi: 10.1016/j.biomaterials.2022.121375.
|
32. |
Zhao M, Dai Y, Li X, et al. Evaluation of long-term biocompatibility and osteogenic differentiation of graphene nanosheet doped calcium phosphate-chitosan AZ91D composites. Mater Sci Eng C Mater Biol Appl, 2018, 90: 365-378.
|
33. |
Cheng P, Weng Z, Hamushan M, et al. High-purity magnesium screws modulate macrophage polarization during the tendon-bone healing process in the anterior cruciate ligament reconstruction rabbit model. Regen Biomater, 2022, 9: rbac067. doi: 10.1093/rb/rbac067.
|
34. |
Wang F, Sun P, Xie E, et al. Phytic acid/magnesium ion complex coating on PEEK fiber woven fabric as an artificial ligament with anti-fibrogenesis and osteogenesis for ligament-bone healing. Biomater Adv, 2022, 140: 213079. doi: 10.1016/j.bioadv.2022.213079.
|