1. |
Silva AM, Moura SR, Teixeira JH, et al. Long noncoding RNAs: a missing link in osteoporosis. Bone Res, 2019, 7: 10. doi: 10.1038/s41413-019-0048-9.
|
2. |
He Y, Chen Y. The potential role of lncRNAs in osteoporosis. J Bone Miner Metab, 2021, 39(3): 341-352.
|
3. |
Zhou H, Sun L, Wan F. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells. Oncol Lett, 2019, 18(5): 4393-4402.
|
4. |
Li W, Li L, Cui R, et al. Bone marrow mesenchymal stem cells derived exosomal Lnc TUG1 promotes bone fracture recovery via miR-22-5p/Anxa8 axis. Hum Cell, 2023, 36(3): 1041-1053.
|
5. |
Yao Z, An W, Moming A, et al. Long non-coding RNA TUG1 knockdown repressed the viability, migration and differentiation of osteoblasts by sponging miR-214. Exp Ther Med, 2022, 23(3): 203. doi: 10.3892/etm.2022.11126.
|
6. |
Hao R, Wang B, Wang H, et al. lncRNA TUG1 promotes proliferation and differentiation of osteoblasts by regulating the miR-545-3p/CNR2 axis. Braz J Med Biol Res, 2020, 53(11): e9798. doi: 10.1590/1414-431X20209798.
|
7. |
王兴文. LncRNA TUG1/miR-34a/FGFR1轴在流体剪切应力调控成骨细胞生物学过程中的作用及机制研究. 兰州: 兰州大学, 2022.
|
8. |
辜淑君, 陈德晖, 张抗抗, 等. 幼龄大鼠异位气管移植致闭塞性细支气管炎动物模型的构建. 中国病理生理杂志, 2021, 37(12): 2299-2304.
|
9. |
Che J, Chen X, Ren W, et al. PTH 1-34 reduced apoptosis of MLO-Y4 osteocyte-like cells by activating autophagy and inhibiting ER stress under RPM conditions. Eur J Pharmacol, 2024, 967: 176364. doi: 10.1016/j.ejphar.2024.176364.
|
10. |
Liu ES, Zalutskaya A, Chae BT, et al. Phosphate interacts with PTHrP to regulate endochondral bone formation. Endocrinology, 2014, 155(10): 3750-3756.
|
11. |
Xie J, Bao M, Bruekers SMC, et al. Collagen gels with different fibrillar microarchitectures elicit different cellular responses. ACS Appl Mater Interfaces, 2017, 9(23): 19630-19637.
|
12. |
Rim EY, Clevers H, Nusse R. The Wnt pathway: From signaling mechanisms to synthetic modulators. Annu Rev Biochem, 2022, 91: 571-598.
|
13. |
Gao Y, Chen N, Fu Z, et al. Progress of Wnt signaling pathway in osteoporosis. Biomolecules, 2023, 13(3): 483. doi: 10.3390/biom13030483.
|
14. |
Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther, 2020, 5(1): 181. doi: 10.1038/s41392-020-00222-7.
|
15. |
Kamalitdinov TB, Fujino K, Keith LS, et al. Targeting the hedgehog signaling pathway to improve tendon-to-bone integration. Osteoarthritis Cartilage, 2023, 31(9): 1202-1213.
|
16. |
Long Z, Dou P, Cai W, et al. MiR-181a-5p promotes osteogenesis by targeting BMP3. Aging (Albany NY), 2023, 15(3): 734-747.
|
17. |
Akkurt MO, Demirkale I, Öznur A. Partial calcanectomy and Ilizarov external fixation may reduce amputation need in severe diabetic calcaneal ulcers. Diabet Foot Ankle, 2017, 8(1): 1264699. doi: 10.1080/2000625X.2017.1264699.
|
18. |
杨琼琼, 李萍, 王倩. 牙种植体周围骨组织修复中microRNA的作用及调控机制. 中国组织工程研究, 2022, 26(28): 4539-4545.
|
19. |
周雷, 王明海. 成骨分化相关信号通路的研究进展. 临床医学进展, 2017, 7(4): 235-241.
|
20. |
张晓玲, 叶艳霞, 叶志华. miR-545-3p抑制VEGFA/VEGFR2信号通路对前列腺癌细胞增殖和凋亡的影响. 中国性科学, 2020, 29(9): 5-10.
|
21. |
Liu SC, Sun QZ, Qiao XF, et al. LncRNA TUG1 influences osteoblast proliferation and differentiation through the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci, 2019, 23(11): 4584-4590.
|
22. |
He Q, Yang S, Gu X, et al. Correction to: Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A. Cell Death Dis, 2018, 9(7): 710. doi: 10.1038/s41419-018-0750-3.
|
23. |
赵子慧, 胡思婧, 陈高策, 等. 基于大麻素2型受体和雌激素受体α研究升麻和黑升麻含药血清对成骨细胞功能的影响. 中草药, 2023, 54(18): 5941-5951.
|
24. |
胡思婧, 练晨霞, 张奇, 等. 熟地黄的大麻素2型受体激动剂活性及对骨代谢的调控作用研究. 中草药, 2022, 53(20): 6481-6491.
|
25. |
吴文苑. 骨型碱性磷酸酶的检测方法和临床应用. 国外医学 (临床生物化学与检验学分册), 1999, 20(2): 64-65.
|
26. |
Carvajal Alegria G, Garrigues F, Bettacchioli E, et al. Tocilizumab controls bone turnover in early polymyalgia rheumatica. Joint Bone Spine, 2021, 88(3): 105117. doi: 10.1016/j.jbspin.2020.105117.
|
27. |
Chubb SA. Measurement of C-terminal telopeptide of type I collagen (CTX) in serum. Clin Biochem, 2012, 45(12): 928-935.
|
28. |
Wei X, Wang J, Deng YY, et al. Tubiechong patching promotes tibia fracture healing in rats by regulating angiogenesis through the VEGF/ERK1/2 signaling pathway. J Ethnopharmacol, 2023, 301: 115851. doi: 10.1016/j.jep.2022.115851.
|