1. |
Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg (Am), 2011, 93(23): 2227-2236.
|
2. |
Zhu Y, Gu Y, Qiao S, et al. Bacterial and mammalian cells adhesion to tantalum-decorated micro-/nano-structured titanium. J Biomed Mater Res A, 2017, 105(3): 871-878.
|
3. |
Menger MM, Laschke MW, Nussler AK, et al. The vascularization paradox of non-union formation. Angiogenesis, 2022, 25(3): 279-290.
|
4. |
Stegen S, Carmeliet G. Metabolic regulation of skeletal cell fate and function. Nat Rev Endocrinol, 2024, 20(7): 399-413.
|
5. |
Rouwkema J, Khademhosseini A. Vascularization and angiogenesis in tissue engineering: Beyond creating static networks. Trends Biotechnol, 2016, 34(9): 733-745.
|
6. |
Huang J, Han Q, Cai M, et al. Effect of angiogenesis in bone tissue engineering. Ann Biomed Eng, 2022, 50(8): 898-913.
|
7. |
Beier JP, Horch RE, Hess A, et al. Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med, 2010, 4(3): 216-223.
|
8. |
Wang L, Fan H, Zhang ZY, et al. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials, 2010, 31(36): 9452-9461.
|
9. |
Simunovic F, Finkenzeller G. Vascularization strategies in bone tissue engineering. Cells, 2021, 10(7): 1749. doi: 10.3390/cells10071749.
|
10. |
Yu H, Xu M, Duan Q, et al. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Biomed Mater, 2024, 19(4). doi: 10.1088/1748-605X/ad46d2.
|
11. |
Twohig C, Helsinga M, Mansoorifar A, et al. A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro. Mater Sci Eng C Mater Biol Appl, 2021, 123: 111976. doi: 10.1016/j.msec.2021.111976.
|
12. |
Gómez Amador AM, Venturini Avendano RA, González AQ, et al. Mechanical characterization and testing of multi-polymer combinations in 3D printing. Heliyon, 2025, 11(3): e42420. doi: 10.1016/j.heliyon.2025.e42420.
|
13. |
Osman MA, Virgilio N, Rouabhia M, et al. Development and characterization of functional polylactic acid/chitosan porous scaffolds for bone tissue engineering. Polymers (Basel), 2022, 14(23): 5079. doi: 10.3390/polym14235079.
|
14. |
Kazemi N, Hassanzadeh-Tabrizi SA, Koupaei N, et al. Incorporation of forsterite nanoparticles in a 3D printed polylactic acid/polyvinylpyrrolidone scaffold for bone tissue regeneration applications. Int J Biol Macromol, 2025, 305(Pt 1): 141046. doi: 10.1016/j.ijbiomac.2025.141046.
|
15. |
Hogan KJ, Öztatlı H, Perez MR, et al. Development of photoreactive demineralized bone matrix 3D printing colloidal inks for bone tissue engineering. Regen Biomater, 2023, 10: rbad090. doi: 10.1093/rb/rbad090.
|
16. |
Ansari MAA, Golebiowska AA, Dash M, et al. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci, 2022, 10(11): 2789-2816.
|
17. |
Vallet-Regí M, Colilla M, González B. Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev, 2011, 40(2): 596-607.
|
18. |
Wang B, Ye X, Chen G, Zhang Y, Zeng Z, Liu C, et al. Fabrication and properties of PLA/beta-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering. Front Bioeng Biotechnol. 2024;12: 1273541.
|
19. |
Chen L, Zhang S, Duan Y, et al. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev, 2024, 53(3): 1167-1315.
|
20. |
Perić Kačarević Ž, Rider P, Alkildani S, et al. An introduction to bone tissue engineering. Int J Artif Organs, 2020, 43(2): 69-86.
|
21. |
Huang G, Pan ST, Qiu JX. The osteogenic effects of porous tantalum and titanium alloy scaffolds with different unit cell structure. Colloids Surf B Biointerfaces, 2022, 210: 112229. doi: 10.1016/j.colsurfb.2021.112229.
|
22. |
Lee JW, Wen HB, Gubbi P, et al. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study. Clin Oral Implants Res, 2018, 29(2): 164-174.
|
23. |
Park EK, Lim JY, Yun IS, et al. Cranioplasty enhanced by three-dimensional printing: Custom-made three-dimensional-printed titanium implants for skull defects. J Craniofac Surg, 2016, 27(4): 943-949.
|
24. |
Hamid KS, Parekh SG, Adams SB. Salvage of severe foot and ankle trauma with a 3D printed scaffold. Foot Ankle Int, 2016, 37(4): 433-439.
|
25. |
Liu B, Ma Z, Li J, et al. Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation. Bioact Mater, 2021, 10: 269-280.
|
26. |
Zhao D, Cheng L, Lu F, et al. Design, fabrication and clinical characterization of additively manufactured tantalum hip joint prosthesis. Regen Biomater, 2024, 11: rbae057. doi: 10.1093/rb/rbae057.
|
27. |
Putra NE, Mirzaali MJ, Apachitei I, et al. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomater, 2020, 109: 1-20.
|
28. |
Karunakaran R, Ortgies S, Tamayol A, et al. Additive manufacturing of magnesium alloys. Bioact Mater, 2020, 5(1): 44-54.
|
29. |
Li Y, Jahr H, Pavanram P, et al. Additively manufactured functionally graded biodegradable porous iron. Acta Biomater, 2019, 96: 646-661.
|
30. |
Mishra DK, Pandey PM. Mechanical behaviour of 3D printed ordered pore topological iron scaffold. Materials Science and Engineering: A, 2020, 783: 139293. doi: 10.1016/j.msea.2020.139293.
|
31. |
Li Y, Li W, Bobbert FSL, et al. Corrosion fatigue behavior of additively manufactured biodegradable porous zinc. Acta Biomater, 2020, 106: 439-449.
|
32. |
Zhang X, Mao J, Zhou Y, et al. Mechanical properties and osteoblast proliferation of complex porous dental implants filled with magnesium alloy based on 3D printing. J Biomater Appl, 2021, 35(10): 1275-1283.
|
33. |
Wang JL, Xu JK, Hopkins C, et al. Biodegradable magnesium-based implants in orthopedics-a general review and perspectives. Adv Sci (Weinh), 2020, 7(8): 1902443. doi: 10.1002/advs.201902443.
|
34. |
Xia D, Qin Y, Guo H, et al. Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioact Mater, 2022, 19: 12-23.
|
35. |
Olszta MJ, Cheng X, Jee SS, et al. Bone structure and formation: A new perspective. Materials Science and Engineering: R: Reports, 2007, 58(3-5): 77-116.
|
36. |
Liu X, Huang W, Fu H, et al. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J Mater Sci Mater Med, 2009, 20(1): 365-372.
|
37. |
El-Rashidy AA, El Moshy S, Radwan IA, et al. Effect of polymeric matrix stiffness on osteogenic differentiation of mesenchymal stem/progenitor cells: Concise review. Polymers (Basel), 2021, 13(17): 2950. doi: 10.3390/polym13172950.
|
38. |
Murphy CM, Matsiko A, Haugh MG, et al. Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. J Mech Behav Biomed Mater, 2012, 11: 53-62.
|
39. |
Abdelaziz AG, Nageh H, Abdo SM, et al. A review of 3D polymeric scaffolds for bone tissue engineering: Principles, fabrication techniques, immunomodulatory roles, and challenges. Bioengineering (Basel), 2023, 10(2): 204. doi: 10.3390/bioengineering10020204.
|
40. |
Yazdanpanah Z, Johnston JD, Cooper DML, et al. 3D bioprinted scaffolds for bone tissue engineering: State-of-the-art and emerging technologies. Front Bioeng Biotechnol, 2022, 10: 824156. doi: 10.3389/fbioe.2022.824156.
|
41. |
Van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater, 2012, 8(7): 2824-2834.
|
42. |
Jin J, Wang D, Qian H, et al. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: A proof-of-concept study. Biomaterials, 2025, 313: 122756. doi: 10.1016/j.biomaterials.2024.122756.
|
43. |
Wang ZH, Zhang M, Liu ZW, et al. Biomimetic design strategy of complex porous structure based on 3D printing Ti-6Al-4V scaffolds for enhanced osseointegration. Materials & Design, 2022, 218: 110721. doi: 10.1016/j.matdes.2022.110721.
|
44. |
Xia P, Luo Y. Vascularization in tissue engineering: The architecture cues of pores in scaffolds. J Biomed Mater Res B Appl Biomater, 2022, 110(5): 1206-1214.
|
45. |
Wang Z, Wang C, Li C, et al. Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: A review. Journal of Alloys and Compounds, 2017, 717: 271-285.
|
46. |
Hudák R, Schnitzer M, Králová ZO, et al. Additive manufacturing of porous Ti6Al4V alloy: Geometry analysis and mechanical properties testing. Applied Sciences-Basel, 2021, 11(6). doi: 10.3390/app11062611.
|
47. |
Guerrero J, Ghayor C, Bhattacharya I, et al. Osteoconductivity of bone substitutes with filament-based microarchitectures: Influence of directionality, filament dimension, and distance. Int J Bioprint, 2022, 9(1): 626. doi: 10.18063/ijb.v9i1.626.
|
48. |
Mitra D, Whitehead J, Yasui OW, et al. Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells. Biomaterials, 2017, 146: 29-39.
|
49. |
Williams DF. On the mechanisms of biocompatibility. Biomaterials, 2008, 29(20): 2941-2953.
|
50. |
Bian N, Chu C, Rung S, et al. Immunomodulatory biomaterials and emerging analytical techniques for probing the immune micro-environment. Tissue Eng Regen Med, 2023, 20(1): 11-24.
|
51. |
Chu S, Li L, Zhang J, et al. Hierarchical interconnected porous scaffolds with regulated interfacial nanotopography exhibit antimicrobial, alleviate inflammation, neovascularization, and tissue integration for bone regeneration. Biomaterials, 2025, 318: 123186. doi: 10.1016/j.biomaterials.2025.123186.
|
52. |
Dorozhkin SV. Calcium orthophosphate-based bioceramics. Materials (Basel), 2013, 6(9): 3840-3942.
|
53. |
Mondschein RJ, Kanitkar A, Williams CB, et al. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials, 2017, 140: 170-188.
|
54. |
Fan H, Zeng X, Wang X, et al. Efficacy of prevascularization for segmental bone defect repair using β-tricalcium phosphate scaffold in rhesus monkey. Biomaterials, 2014, 35(26): 7407-7415.
|
55. |
王辉, 王茜, 张辉, 等. 带蒂筋膜瓣包裹国产多孔钽修复兔桡骨节段性骨缺损实验研究. 中国修复重建外科杂志, 2017, 31(10): 1200-1207.
|
56. |
Jiang H, Liu B, Lin J, et al. MuSCs and IPCs: roles in skeletal muscle homeostasis, aging and injury. Cell Mol Life Sci, 2024, 81(1): 67. doi: 10.1007/s00018-023-05096-w.
|
57. |
Lin WH, Tzeng CY, Kao FC, et al. The proliferation and differentiation of skeletal muscle stem cells are enhanced in a bioreactor. Biotechnol Bioeng, 2025, 122(1): 95-109.
|
58. |
Li NY, Yuan RT, Chen T, et al. Effect of platelet-rich plasma and latissimus dorsi muscle flap on osteogenesis and vascularization of tissue-engineered bone in dogs. J Oral Maxillofac Surg, 2009, 67(9): 1850-1858.
|
59. |
Warnke PH, Springer IN, Wiltfang J, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet, 2004, 364(9436): 766-770.
|
60. |
Mehta D, Abdou S, Stranix JT, et al. Comparing radiographic progression of bone healing in gustilo ⅢB open tibia fractures treated with muscle versus Fasciocutaneous Flaps. J Orthop Trauma, 2018, 32(8): 381-385.
|
61. |
Meza-Perez S, Randall TD. Immunological functions of the omentum. Trends Immunol, 2017, 38(7): 526-536.
|
62. |
Kamei Y, Toriyama K, Takada T, et al. Tissue-engineering bone from omentum. Nagoya J Med Sci, 2010, 72(3-4): 111-117.
|
63. |
Naujokat H, Loger K, Schulz J, et al. Bone tissue engineering in the greater omentum with computer-aided design/computer-aided manufacturing scaffolds is enhanced by a periosteum transplant. Regen Med, 2020, 15(11): 2297-2309.
|
64. |
Wiltfang J, Rohnen M, Egberts J-H, Lützen U, Wieker H, Açil Y, et al. Man as a Living Bioreactor: Prefabrication of a Custom Vascularized Bone Graft in the Gastrocolic Omentum. Tissue Engineering Part C: Methods. 2016;22(8): 740-6.
|
65. |
Birkenfeld F, Sengebusch A, Völschow C, et al. Scaffold implantation in the omentum majus of rabbits for new bone formation. J Craniomaxillofac Surg, 2019, 47(8): 1274-1279.
|
66. |
Zhang X, Deng C, Qi S. Periosteum containing implicit stem cells: A progressive source of inspiration for bone tissue regeneration. Int J Mol Sci, 2024, 25(4): 2162. doi: 10.3390/ijms25042162.
|
67. |
Finley JM, Acland RD, Wood MB. Revascularized periosteal grafts--a new method to produce functional new bone without bone grafting. Plast Reconstr Surg, 1978, 61(1): 1-6.
|
68. |
Huang RL, Tremp M, Ho CK, et al. Prefabrication of a functional bone graft with a pedicled periosteal flap as an in vivo bioreactor. Sci Rep, 2017, 7(1): 18038. doi: 10.1038/s41598-017-17452-5.
|
69. |
Naujokat H, Lipp M, Açil Y, et al. Bone tissue engineering in the greater omentum is enhanced by a periosteal transplant in a miniature pig model. Regen Med, 2019, 14(2): 127-138.
|
70. |
Tatara AM, Shah SR, Demian N, et al. Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors. Acta Biomater, 2016, 45: 72-84.
|
71. |
Gokdogan O. Bone grafting in maxillofacial trauma. Curr Opin Otolaryngol Head Neck Surg, 2022, 30(4): 260-264.
|
72. |
Cai X, Xu Y, Yu K, et al. Clinical application of 3-dimensional printed navigation templates in treating femoral head osteonecrosis with pedicled iliac bone graft. Ann Plast Surg, 2020, 84(5S Suppl 3): S230-S234.
|