- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guiyang, 563000, P. R. China;
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | Lee SO, Kim IK. Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol, 2024, 12: 1363811. doi: 10.3389/fcell.2024.1363811. |
2. | Brown S, Dayan JH, Kataru RP, et al. The vicious circle of stasis, inflammation, and fibrosis in lymphedema. Plast Reconstr Surg, 2023, 151(2): 330e-341e. |
3. | Katrina MJ, Kaveh F, Valera C, et al. Global impact of lymphedema on quality of life and society. European Journal of Plastic Surgery, 2023, 46: 901-913. |
4. | Ly CL, Kataru RP, Mehrara BJ. Inflammatory manifestations of lymphedema. Int J Mol Sci, 2017, 18(1): 171. doi: 10.3390/ijms18010171. |
5. | Greene AK, Sudduth CL. Lower extremity lymphatic function in nonambulatory patients with neuromuscular disease. Lymphat Res Biol, 2021, 19(2): 126-128. |
6. | 李秀娟, 王嘉锋, 张燕, 等. 白三烯B4受体1拮抗剂U75302对脓毒症小鼠细胞免疫与炎症反应的影响. 第二军医大学学报, 2014, 35(3): 246-250. |
7. | Yang JC, Huang LH, Wu SC, et al. Lymphaticovenous anastomosis supermicrosurgery decreases oxidative stress and increases antioxidant capacity in the serum of lymphedema patients. J Clin Med, 2021, 10(7): 1540. doi: 10.3390/jcm10071540. |
8. | 陈君哲, 邓呈亮. 干细胞治疗淋巴水肿的基础及临床应用研究进展. 中国修复重建外科杂志, 2024, 38(1): 99-106. |
9. | Shin WS, Szuba A, Rockson SG. Animal models for the study of lymphatic insufficiency. Lymphat Res Biol, 2003, 1(2): 159-169. |
10. | Hadamitzky C, Pabst R. Acquired lymphedema: an urgent need for adequate animal models. Cancer Res, 2008, 68(2): 343-345. |
11. | Das SK, Franklin JD, O'Brien BM, et al. A practical model of secondary lymphedema in dogs. Plast Reconstr Surg, 1981, 68(3): 422-428. |
12. | Chen HC, Pribaz JJ, O'Brien BM, et al. Creation of distal canine limb lymphedema. Plast Reconstr Surg, 1989, 83(6): 1022-1026. |
13. | Hsu JF, Yu RP, Stanton EW, et al. Current advancements in animal models of postsurgical lymphedema: a systematic review. Adv Wound Care (New Rochelle), 2022, 11(8): 399-418. |
14. | Wang GY, Zhong SZ. A model of experimental lymphedema in rats' limbs. Microsurgery, 1985, 6(4): 204-210. |
15. | García Nores GD, Ly CL, Cuzzone DA, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun, 2018, 9(1): 1970. doi: 10.1038/s41467-018-04418-y. |
16. | Frueh FS, Körbel C, Gassert L, et al. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb. Sci Rep, 2016, 6: 34673. doi: 10.1038/srep34673. |
17. | Komatsu E, Nakajima Y, Mukai K, et al. Lymph drainage during wound healing in a hindlimb lymphedema mouse model. Lymphat Res Biol, 2017, 15(1): 32-38. |
18. | Hespe GE, Ly CL, Kataru RP, et al. Baseline lymphatic dysfunction amplifies the negative effects of lymphatic injury. Plast Reconstr Surg, 2019, 143(1): 77e-87e. |
19. | Kanter MA, Slavin SA, Kaplan W. An experimental model for chronic lymphedema. Plast Reconstr Surg, 1990, 85(4): 573-580. |
20. | Harb AA, Levi MA, Corvi JJ, et al. Creation of a rat lower limb lymphedema model. Ann Plast Surg, 2020, 85(S1 Suppl 1): S129-S134. |
21. | Triacca V, Pisano M, Lessert C, et al. Experimental drainage device to reduce lymphoedema in a rat model. Eur J Vasc Endovasc Surg, 2019, 57(6): 859-867. |
22. | Wiinholt A, Jørgensen MG, Bučan A, et al. A revised method for inducing secondary lymphedema in the hindlimb of mice. J Vis Exp, 2019. doi: 10.3791/60578. |
23. | Yang CY, Nguyen DH, Wu CW, et al. Developing a lower limb lymphedema animal model with combined lymphadenectomy and low-dose radiation. Plast Reconstr Surg Glob Open, 2014, 2(3): e121. doi: 10.1097/GOX.0000000000000064. |
24. | Sommer T, Meier M, Bruns F, et al. Quantification of lymphedema in a rat model by 3D-active contour segmentation by magnetic resonance imaging. Lymphat Res Biol, 2012, 10(1): 25-29. |
25. | Jørgensen MG, Toyserkani NM, Hansen CR, et al. Quantification of chronic lymphedema in a revised mouse model. Ann Plast Surg, 2018, 81(5): 594-603. |
26. | 孙一宇, 崔春晓, 戴婷婷, 等. 改良小鼠后肢淋巴水肿模型的构建. 组织工程与重建外科杂志, 2016, 12(6): 349-352. |
27. | Bramos A, Perrault D, Yang S, et al. Prevention of postsurgical lymphedema by 9-cis retinoic acid. Ann Surg, 2016, 264(2): 353-361. |
28. | Park HS, Jung IM, Choi GH, et al. Modification of a rodent hindlimb model of secondary lymphedema: surgical radicality versus radiotherapeutic ablation. Biomed Res Int, 2013, 2013: 208912. doi: 10.1155/2013/208912. |
29. | Oashi K, Furukawa H, Nishihara H, et al. Pathophysiological characteristics of melanoma in-transit metastasis in a lymphedema mouse model. J Invest Dermatol, 2013, 133(2): 537-544. |
30. | Lee J, Song H, Roh K, et al. Proteomic profiling of lymphedema development in mouse model. Cell Biochem Funct, 2016, 34(5): 317-325. |
31. | Morita Y, Sakata N, Nishimura M, et al. Efficacy of neonatal porcine bone marrow-derived mesenchymal stem cell xenotransplantation for the therapy of hind limb lymphedema in mice. Cell Transplant, 2024, 33: 9636897241260195. doi: 10.1177/09636897241260195. |
32. | Morita Y, Sakata N, Kawakami R, et al. Establishment of a simple, reproducible, and long-lasting hind limb animal model of lymphedema. Plast Reconstr Surg Glob Open, 2023, 11(9): e5243. doi: 10.1097/GOX.0000000000005243. |
33. | Nakajima Y, Asano K, Mukai K, et al. Near-Infrared fluorescence imaging directly visualizes lymphatic drainage pathways and connections between superficial and deep lymphatic systems in the mouse hindlimb. Sci Rep, 2018, 8(1): 7078. doi: 10.1038/s41598-018-25383-y. |
34. | Asano K, Nakajima Y, Mukai K, et al. Pre-collecting lymphatic vessels form detours following obstruction of lymphatic flow and function as collecting lymphatic vessels. PLoS One, 2020, 15(1): e0227814. doi: 10.1371/journal.pone.0227814. |
35. | Suzuki Y, Nakajima Y, Nakatani T, et al. Comparison of normal hindlimb lymphatic systems in rats with detours present after lymphatic flow blockage. PLoS One, 2021, 16(12): e0260404. doi: 10.1371/journal.pone.0260404. |
36. | Yamaji Y, Akita S, Akita H, et al. Development of a mouse model for the visual and quantitative assessment of lymphatic trafficking and function by in vivo imaging. Sci Rep, 2018, 8(1): 5921. doi: 10.1038/s41598-018-23693-9. |
37. | 杨杏, 潘兴芳, 赵天易, 等. 继发性淋巴水肿动物模型的研究进展. 实验动物与比较医学, 2022, 42(1): 62-67. |
38. | García Nores GD, Ly CL, Savetsky IL, et al. Regulatory T cells mediate local immunosuppression in lymphedema. J Invest Dermatol, 2018, 138(2): 325-335. |
39. | Lynch LL, Mendez U, Waller AB, et al. Fibrosis worsens chronic lymphedema in rodent tissues. Am J Physiol Heart Circ Physiol, 2015, 308(10): H1229-H1236. |
40. | Mendez U, Brown EM, Ongstad EL, et al. Functional recovery of fluid drainage precedes lymphangiogenesis in acute murine foreleg lymphedema. Am J Physiol Heart Circ Physiol, 2012, 302(11): H2250-H2256. |
41. | Slavin SA, Van den Abbeele AD, Losken A, et al. Return of lymphatic function after flap transfer for acute lymphedema. Ann Surg, 1999, 229(3): 421-427. |
42. | Nishioka T, Katayama KI, Kumegawa S, et al. Increased infiltration of CD4+ T cell in the complement deficient lymphedema model. BMC Immunol, 2023, 24(1): 42. doi: 10.1186/s12865-023-00580-1. |
43. | 潘兴芳, 李中正, 杨杏, 等. 一种大鼠前肢继发性淋巴水肿动物模型及其建立方法和应用: CN116687611A [P]. 2023-09-05. |
44. | Frueh FS, Gassert L, Scheuer C, et al. Adipose tissue-derived microvascular fragments promote lymphangiogenesis in a murine lymphedema model. J Tissue Eng, 2022, 13: 20417314221109957. doi: 10.1177/20417314221109957. |
45. | Hassanein AH, Sinha M, Neumann CR, et al. A murine tail lymphedema model. J Vis Exp, 2021(168): 10.3791/61848. |
46. | Zhou C, Su W, Han H, Li N, Ma G, Cui L. Mouse tail models of secondary lymphedema: fibrosis gradually worsens and is irreversible. Int J Clin Exp Pathol. 2020, 13(1): 54-64. |
47. | Choi J, Kim KY, Jeon JY, et al. Development and evaluation of a new in vivo volume measuring system in mouse tail lymphedema model. Lymphat Res Biol, 2019, 17(4): 402-412. |
48. | Shimizu Y, Shibata R, Ishii M, et al. Adiponectin-mediated modulation of lymphatic vessel formation and lymphedema. J Am Heart Assoc, 2013, 2(5): e000438. doi: 10.1161/JAHA.113.000438. |
49. | Gardenier JC, Kataru RP, Hespe GE, et al. Topical tacrolimus for the treatment of secondary lymphedema. Nat Commun, 2017, 8: 14345. doi: 10.1038/ncomms14345. |
50. | Chang TC, Uen YH, Chou CH, et al. The role of cyclooxygenase-derived oxidative stress in surgically induced lymphedema in a mouse tail model. Pharm Biol, 2013, 51(5): 573-580. |
51. | Arruda G, Ariga S, de Lima TM, et al. A modified mouse-tail lymphedema model. Lymphology, 2020, 53(1): 29-37. |
52. | Zampell JC, Aschen S, Weitman ES, et al. Regulation of adipogenesis by lymphatic fluid stasis: part Ⅰ. Adipogenesis, fibrosis, and inflammation. Plast Reconstr Surg, 2012, 129(4): 825-834. |
53. | Ghanta S, Cuzzone DA, Torrisi JS, et al. Regulation of inflammation and fibrosis by macrophages in lymphedema. Am J Physiol Heart Circ Physiol, 2015, 308(9): H1065-H1077. |
54. | Avraham T, Zampell JC, Yan A, et al. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. FASEB J, 2013, 27(3): 1114-1126. |
55. | Avraham T, Daluvoy S, Zampell J, et al. Blockade of transforming growth factor-beta1 accelerates lymphatic regeneration during wound repair. Am J Pathol, 2010, 177(6): 3202-3214. |
56. | Liu Z, Li J, Bian Y, et al. Low-intensity pulsed ultrasound reduces lymphedema by regulating macrophage polarization and enhancing microcirculation. Front Bioeng Biotechnol, 2023, 11: 1173169. doi: 10.3389/fbioe.2023.1173169. |
57. | Cui C, Nicoli F, Min P, et al. Validation and efficacy of 'pure' venous lymph node flap in a rat lymphoedema model. Wound Repair Regen, 2023, 31(3): 360-366. |
58. | Gousopoulos E, Karaman S, Proulx ST, et al. High-fat diet in the absence of obesity does not aggravate surgically induced lymphoedema in mice. Eur Surg Res, 2017, 58(3-4): 180-192. |
59. | Serizawa F, Ito K, Matsubara M, et al. Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur J Vasc Endovasc Surg, 2011, 42(2): 254-260. |
60. | Deng J, Ridner SH, Dietrich MS, et al. Prevalence of secondary lymphedema in patients with head and neck cancer. J Pain Symptom Manage, 2012, 43(2): 244-252. |
61. | Ridner SH, Dietrich MS, Niermann K, et al. A prospective study of the lymphedema and fibrosis continuum in patients with head and neck cancer. Lymphat Res Biol, 2016, 14(4): 198-205. |
62. | Daneshgaran G, Paik CB, Cooper MN, et al. Prevention of postsurgical lymphedema via immediate delivery of sustained-release 9-cis retinoic acid to the lymphedenectomy site. J Surg Oncol, 2020, 121(1): 100-108. |
- 1. Lee SO, Kim IK. Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol, 2024, 12: 1363811. doi: 10.3389/fcell.2024.1363811.
- 2. Brown S, Dayan JH, Kataru RP, et al. The vicious circle of stasis, inflammation, and fibrosis in lymphedema. Plast Reconstr Surg, 2023, 151(2): 330e-341e.
- 3. Katrina MJ, Kaveh F, Valera C, et al. Global impact of lymphedema on quality of life and society. European Journal of Plastic Surgery, 2023, 46: 901-913.
- 4. Ly CL, Kataru RP, Mehrara BJ. Inflammatory manifestations of lymphedema. Int J Mol Sci, 2017, 18(1): 171. doi: 10.3390/ijms18010171.
- 5. Greene AK, Sudduth CL. Lower extremity lymphatic function in nonambulatory patients with neuromuscular disease. Lymphat Res Biol, 2021, 19(2): 126-128.
- 6. 李秀娟, 王嘉锋, 张燕, 等. 白三烯B4受体1拮抗剂U75302对脓毒症小鼠细胞免疫与炎症反应的影响. 第二军医大学学报, 2014, 35(3): 246-250.
- 7. Yang JC, Huang LH, Wu SC, et al. Lymphaticovenous anastomosis supermicrosurgery decreases oxidative stress and increases antioxidant capacity in the serum of lymphedema patients. J Clin Med, 2021, 10(7): 1540. doi: 10.3390/jcm10071540.
- 8. 陈君哲, 邓呈亮. 干细胞治疗淋巴水肿的基础及临床应用研究进展. 中国修复重建外科杂志, 2024, 38(1): 99-106.
- 9. Shin WS, Szuba A, Rockson SG. Animal models for the study of lymphatic insufficiency. Lymphat Res Biol, 2003, 1(2): 159-169.
- 10. Hadamitzky C, Pabst R. Acquired lymphedema: an urgent need for adequate animal models. Cancer Res, 2008, 68(2): 343-345.
- 11. Das SK, Franklin JD, O'Brien BM, et al. A practical model of secondary lymphedema in dogs. Plast Reconstr Surg, 1981, 68(3): 422-428.
- 12. Chen HC, Pribaz JJ, O'Brien BM, et al. Creation of distal canine limb lymphedema. Plast Reconstr Surg, 1989, 83(6): 1022-1026.
- 13. Hsu JF, Yu RP, Stanton EW, et al. Current advancements in animal models of postsurgical lymphedema: a systematic review. Adv Wound Care (New Rochelle), 2022, 11(8): 399-418.
- 14. Wang GY, Zhong SZ. A model of experimental lymphedema in rats' limbs. Microsurgery, 1985, 6(4): 204-210.
- 15. García Nores GD, Ly CL, Cuzzone DA, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun, 2018, 9(1): 1970. doi: 10.1038/s41467-018-04418-y.
- 16. Frueh FS, Körbel C, Gassert L, et al. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb. Sci Rep, 2016, 6: 34673. doi: 10.1038/srep34673.
- 17. Komatsu E, Nakajima Y, Mukai K, et al. Lymph drainage during wound healing in a hindlimb lymphedema mouse model. Lymphat Res Biol, 2017, 15(1): 32-38.
- 18. Hespe GE, Ly CL, Kataru RP, et al. Baseline lymphatic dysfunction amplifies the negative effects of lymphatic injury. Plast Reconstr Surg, 2019, 143(1): 77e-87e.
- 19. Kanter MA, Slavin SA, Kaplan W. An experimental model for chronic lymphedema. Plast Reconstr Surg, 1990, 85(4): 573-580.
- 20. Harb AA, Levi MA, Corvi JJ, et al. Creation of a rat lower limb lymphedema model. Ann Plast Surg, 2020, 85(S1 Suppl 1): S129-S134.
- 21. Triacca V, Pisano M, Lessert C, et al. Experimental drainage device to reduce lymphoedema in a rat model. Eur J Vasc Endovasc Surg, 2019, 57(6): 859-867.
- 22. Wiinholt A, Jørgensen MG, Bučan A, et al. A revised method for inducing secondary lymphedema in the hindlimb of mice. J Vis Exp, 2019. doi: 10.3791/60578.
- 23. Yang CY, Nguyen DH, Wu CW, et al. Developing a lower limb lymphedema animal model with combined lymphadenectomy and low-dose radiation. Plast Reconstr Surg Glob Open, 2014, 2(3): e121. doi: 10.1097/GOX.0000000000000064.
- 24. Sommer T, Meier M, Bruns F, et al. Quantification of lymphedema in a rat model by 3D-active contour segmentation by magnetic resonance imaging. Lymphat Res Biol, 2012, 10(1): 25-29.
- 25. Jørgensen MG, Toyserkani NM, Hansen CR, et al. Quantification of chronic lymphedema in a revised mouse model. Ann Plast Surg, 2018, 81(5): 594-603.
- 26. 孙一宇, 崔春晓, 戴婷婷, 等. 改良小鼠后肢淋巴水肿模型的构建. 组织工程与重建外科杂志, 2016, 12(6): 349-352.
- 27. Bramos A, Perrault D, Yang S, et al. Prevention of postsurgical lymphedema by 9-cis retinoic acid. Ann Surg, 2016, 264(2): 353-361.
- 28. Park HS, Jung IM, Choi GH, et al. Modification of a rodent hindlimb model of secondary lymphedema: surgical radicality versus radiotherapeutic ablation. Biomed Res Int, 2013, 2013: 208912. doi: 10.1155/2013/208912.
- 29. Oashi K, Furukawa H, Nishihara H, et al. Pathophysiological characteristics of melanoma in-transit metastasis in a lymphedema mouse model. J Invest Dermatol, 2013, 133(2): 537-544.
- 30. Lee J, Song H, Roh K, et al. Proteomic profiling of lymphedema development in mouse model. Cell Biochem Funct, 2016, 34(5): 317-325.
- 31. Morita Y, Sakata N, Nishimura M, et al. Efficacy of neonatal porcine bone marrow-derived mesenchymal stem cell xenotransplantation for the therapy of hind limb lymphedema in mice. Cell Transplant, 2024, 33: 9636897241260195. doi: 10.1177/09636897241260195.
- 32. Morita Y, Sakata N, Kawakami R, et al. Establishment of a simple, reproducible, and long-lasting hind limb animal model of lymphedema. Plast Reconstr Surg Glob Open, 2023, 11(9): e5243. doi: 10.1097/GOX.0000000000005243.
- 33. Nakajima Y, Asano K, Mukai K, et al. Near-Infrared fluorescence imaging directly visualizes lymphatic drainage pathways and connections between superficial and deep lymphatic systems in the mouse hindlimb. Sci Rep, 2018, 8(1): 7078. doi: 10.1038/s41598-018-25383-y.
- 34. Asano K, Nakajima Y, Mukai K, et al. Pre-collecting lymphatic vessels form detours following obstruction of lymphatic flow and function as collecting lymphatic vessels. PLoS One, 2020, 15(1): e0227814. doi: 10.1371/journal.pone.0227814.
- 35. Suzuki Y, Nakajima Y, Nakatani T, et al. Comparison of normal hindlimb lymphatic systems in rats with detours present after lymphatic flow blockage. PLoS One, 2021, 16(12): e0260404. doi: 10.1371/journal.pone.0260404.
- 36. Yamaji Y, Akita S, Akita H, et al. Development of a mouse model for the visual and quantitative assessment of lymphatic trafficking and function by in vivo imaging. Sci Rep, 2018, 8(1): 5921. doi: 10.1038/s41598-018-23693-9.
- 37. 杨杏, 潘兴芳, 赵天易, 等. 继发性淋巴水肿动物模型的研究进展. 实验动物与比较医学, 2022, 42(1): 62-67.
- 38. García Nores GD, Ly CL, Savetsky IL, et al. Regulatory T cells mediate local immunosuppression in lymphedema. J Invest Dermatol, 2018, 138(2): 325-335.
- 39. Lynch LL, Mendez U, Waller AB, et al. Fibrosis worsens chronic lymphedema in rodent tissues. Am J Physiol Heart Circ Physiol, 2015, 308(10): H1229-H1236.
- 40. Mendez U, Brown EM, Ongstad EL, et al. Functional recovery of fluid drainage precedes lymphangiogenesis in acute murine foreleg lymphedema. Am J Physiol Heart Circ Physiol, 2012, 302(11): H2250-H2256.
- 41. Slavin SA, Van den Abbeele AD, Losken A, et al. Return of lymphatic function after flap transfer for acute lymphedema. Ann Surg, 1999, 229(3): 421-427.
- 42. Nishioka T, Katayama KI, Kumegawa S, et al. Increased infiltration of CD4+ T cell in the complement deficient lymphedema model. BMC Immunol, 2023, 24(1): 42. doi: 10.1186/s12865-023-00580-1.
- 43. 潘兴芳, 李中正, 杨杏, 等. 一种大鼠前肢继发性淋巴水肿动物模型及其建立方法和应用: CN116687611A [P]. 2023-09-05.
- 44. Frueh FS, Gassert L, Scheuer C, et al. Adipose tissue-derived microvascular fragments promote lymphangiogenesis in a murine lymphedema model. J Tissue Eng, 2022, 13: 20417314221109957. doi: 10.1177/20417314221109957.
- 45. Hassanein AH, Sinha M, Neumann CR, et al. A murine tail lymphedema model. J Vis Exp, 2021(168): 10.3791/61848.
- 46. Zhou C, Su W, Han H, Li N, Ma G, Cui L. Mouse tail models of secondary lymphedema: fibrosis gradually worsens and is irreversible. Int J Clin Exp Pathol. 2020, 13(1): 54-64.
- 47. Choi J, Kim KY, Jeon JY, et al. Development and evaluation of a new in vivo volume measuring system in mouse tail lymphedema model. Lymphat Res Biol, 2019, 17(4): 402-412.
- 48. Shimizu Y, Shibata R, Ishii M, et al. Adiponectin-mediated modulation of lymphatic vessel formation and lymphedema. J Am Heart Assoc, 2013, 2(5): e000438. doi: 10.1161/JAHA.113.000438.
- 49. Gardenier JC, Kataru RP, Hespe GE, et al. Topical tacrolimus for the treatment of secondary lymphedema. Nat Commun, 2017, 8: 14345. doi: 10.1038/ncomms14345.
- 50. Chang TC, Uen YH, Chou CH, et al. The role of cyclooxygenase-derived oxidative stress in surgically induced lymphedema in a mouse tail model. Pharm Biol, 2013, 51(5): 573-580.
- 51. Arruda G, Ariga S, de Lima TM, et al. A modified mouse-tail lymphedema model. Lymphology, 2020, 53(1): 29-37.
- 52. Zampell JC, Aschen S, Weitman ES, et al. Regulation of adipogenesis by lymphatic fluid stasis: part Ⅰ. Adipogenesis, fibrosis, and inflammation. Plast Reconstr Surg, 2012, 129(4): 825-834.
- 53. Ghanta S, Cuzzone DA, Torrisi JS, et al. Regulation of inflammation and fibrosis by macrophages in lymphedema. Am J Physiol Heart Circ Physiol, 2015, 308(9): H1065-H1077.
- 54. Avraham T, Zampell JC, Yan A, et al. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. FASEB J, 2013, 27(3): 1114-1126.
- 55. Avraham T, Daluvoy S, Zampell J, et al. Blockade of transforming growth factor-beta1 accelerates lymphatic regeneration during wound repair. Am J Pathol, 2010, 177(6): 3202-3214.
- 56. Liu Z, Li J, Bian Y, et al. Low-intensity pulsed ultrasound reduces lymphedema by regulating macrophage polarization and enhancing microcirculation. Front Bioeng Biotechnol, 2023, 11: 1173169. doi: 10.3389/fbioe.2023.1173169.
- 57. Cui C, Nicoli F, Min P, et al. Validation and efficacy of 'pure' venous lymph node flap in a rat lymphoedema model. Wound Repair Regen, 2023, 31(3): 360-366.
- 58. Gousopoulos E, Karaman S, Proulx ST, et al. High-fat diet in the absence of obesity does not aggravate surgically induced lymphoedema in mice. Eur Surg Res, 2017, 58(3-4): 180-192.
- 59. Serizawa F, Ito K, Matsubara M, et al. Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur J Vasc Endovasc Surg, 2011, 42(2): 254-260.
- 60. Deng J, Ridner SH, Dietrich MS, et al. Prevalence of secondary lymphedema in patients with head and neck cancer. J Pain Symptom Manage, 2012, 43(2): 244-252.
- 61. Ridner SH, Dietrich MS, Niermann K, et al. A prospective study of the lymphedema and fibrosis continuum in patients with head and neck cancer. Lymphat Res Biol, 2016, 14(4): 198-205.
- 62. Daneshgaran G, Paik CB, Cooper MN, et al. Prevention of postsurgical lymphedema via immediate delivery of sustained-release 9-cis retinoic acid to the lymphedenectomy site. J Surg Oncol, 2020, 121(1): 100-108.