Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | 黄理宾, 黄秋实, 杨烈. 全球及中国的结直肠癌流行病学特征及防治: 2022《全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(5): 530-537. |
2. | Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol, 2021, 14(10): 101174. doi: 10.1016/j.tranon.2021.101174. |
3. | 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2024, 46(3): 221-231. |
4. | 姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780. |
5. | Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27(45): 5904-5912. |
6. | Paget S. The distribution of secondary growths in cancer of the breast. Lancet, 1889, 133: 571-573. |
7. | Aasen T, Mesnil M, Naus CC, et al. Gap junctions and cancer: communicating for 50 years. Nat Rev Cancer, 2016, 16(12): 775-788. |
8. | Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev, 2018, 32(19-20): 1267-1284. |
9. | Zhao LY, Mei JX, Yu G, et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther, 2023, 8(1): 201. doi: 10.1038/s41392-023-01406-7. |
10. | Atkin W, Wooldrage K, Parkin DM, et al. Long term effects of once-only flexible sigmoidoscopy screening after 17 years of follow-up: the UK Flexible Sigmoidoscopy Screening randomised controlled trial. Lancet, 2017, 389(10076): 1299-1311. |
11. | Cardoso R, Guo F, Heisser T, et al. Proportion and stage distribution of screen-detected and non-screen-detected colorectal cancer in nine European countries: an international, population-based study. Lancet Gastroenterol Hepatol, 2022, 7(8): 711-723. |
12. | Dal Buono A, Gaiani F, Poliani L, et al. Juvenile polyposis syndrome: An overview. Best Pract Res Clin Gastroenterol, 2022, 58-59: 101799. doi: 10.1016/j.bpg.2022.101799. |
13. | Kidambi TD, Kohli DR, Samadder NJ, et al. Hereditary polyposis syndromes. Curr Treat Options Gastroenterol, 2019, 17(4): 650-665. |
14. | Kim B, Won D, Jang M, et al. Next-generation sequencing with comprehensive bioinformatics analysis facilitates somatic mosaic APC gene mutation detection in patients with familial adenomatous polyposis. BMC Med Genomics, 2019, 12(1): 103. doi: 10.1186/s12920-019-0553-0. |
15. | Zhang Y, Meng Q, Sun Q, et al. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab, 2021, 44: 101131. doi: 10.1016/j.molmet.2020.101131. |
16. | Yehia L, Keel E, Eng C. The clinical spectrum of PTEN mutations. Annu Rev Med, 2020, 71: 103-116. |
17. | Cerretelli G, Ager A, Arends MJ, et al. Molecular pathology of Lynch syndrome. J Pathol, 2020, 250(5): 518-531. |
18. | 周雄, 胡明, 蒋栋铭, 等. 结直肠癌进展相关关键分子事件研究进展. 肿瘤防治研究, 2023, 50(6): 609-615. |
19. | Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science, 2013, 339(6127): 1546-1558. |
20. | 康晓培, 郭振江, 刘防震. BAF57在结直肠癌组织中的表达及其对患者预后的影响. 癌变·畸变·突变, 2024, 36(5): 379-383. |
21. | Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res, 2019, 47(D1): D1005-D1012. doi: 10.1093/nar/gky1120. |
22. | Peters JM, Gonzalez FJ. The evolution of carcinogenesis. Toxicol Sci, 2018, 165(2): 272-276. |
23. | Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet, 2019, 394(10207): 1467-1480. |
24. | Bell HN, Rebernick RJ, Goyert J, et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell, 2022, 40(2): 185-200. |
25. | De Matteis R, Flak MB, Gonzalez-Nunez M, et al. Aspirin activates resolution pathways to reprogram T cell and macrophage responses in colitis-associated colorectal cancer. Sci Adv, 2022, 8(5): eabl5420. doi: 10.1126/sciadv.abl5420. |
26. | Zhu M, Ma Z, Zhang X, et al. C-reactive protein and cancer risk: a pan-cancer study of prospective cohort and Mendelian randomization analysis. BMC Med, 2022, 20(1): 301. doi: 10.1186/s12916-022-02506-x. |
27. | 赖智勇, 胡嘉欣, 李枝键, 等. 基于单细胞质谱流式技术分析膀胱肿瘤微环境中免疫细胞的组成. 中国癌症防治杂志, 2020, 12(2): 169-174. |
28. | Nam JH, Noh GT, Chung SS, et al. Validity of C-reactive protein as a surrogate marker for infectious complications after surgery for colorectal cancer. Surg Infect (Larchmt), 2023, 24(5): 488-494. |
29. | 杨驰, 罗长江. 结直肠癌炎症、免疫及胆固醇代谢背景研究进展. 国际肿瘤学杂志, 2022, 49(10): 630-634. |
30. | Yin Y, Wan J, Yu J, et al. Molecular pathogenesis of colitis-associated colorectal cancer: immunity, genetics, and intestinal microecology. Inflamm Bowel Dis, 2023, 29(10): 1648-1657. |
31. | Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov, 2022, 12(1): 31-46. |
32. | Bosák J, Kohoutová D, Hrala M, et al. Escherichia coli from biopsies differ in virulence genes between patients with colorectal neoplasia and healthy controls. Front Microbiol, 2023, 14: 1141619. doi: 10.3389/fmicb.2023.1141619. |
33. | Li R, Jia Z, Trush MA. Defining ROS in biology and medicine. React Oxyg Species (Apex), 2016, 1(1): 9-21. |
34. | Valko M, Jomova K, Rhodes CJ, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol, 2016, 90(1): 1-37. |
35. | Lin S, Li Y, Zamyatnin AA, et al. Reactive oxygen species and colorectal cancer. J Cell Physiol, 2018, 233(7): 5119-5132. |
36. | Hussain SP, Amstad P, Raja K, et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res, 2000, 60(13): 3333-3337. |
37. | Neganova M, Liu J, Aleksandrova Y, et al. Therapeutic influence on important targets associated with chronic inflammation and oxidative stress in cancer treatment. Cancers (Basel), 2021, 13(23): 6062. doi: 10.3390/cancers13236062. |
38. | Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res, 2023, 72(1): 1-13. |
39. | Gong W, Shi Y, Ren J. Research progresses of molecular mechanism of pyroptosis and its related diseases. Immunobiology, 2020, 225(2): 151884. doi: 10.1016/j.imbio.2019.11.019. |
40. | Wei Y, Yang L, Pandeya A, et al. Pyroptosis-induced inflammation and tissue damage. J Mol Biol, 2022, 434(4): 167301. doi: 10.1016/j.jmb.2021.167301. |
41. | Liu Z, Wang C, Lin C. Pyroptosis as a double-edged sword: The pathogenic and therapeutic roles in inflammatory diseases and cancers. Life Sci, 2023, 318: 121498. doi: 10.1016/j.lfs.2023.121498. |
42. | Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev, 2023, 314(1): 229-249. |
43. | Lu L, Zhang Y, Tan X, et al. Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discov, 2022, 8(1): 338. doi: 10.1038/s41420-022-01101-6. |
44. | Hu D, Cui L, Zhang S, et al. Antitumor effect of tubeimoside-Ⅰ on murine colorectal cancers through PKM2-dependent pyroptosis and immunomodulation. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(6): 4069-4087. |
45. | Chuang SY, Yang CH, Chou CC, et al. TLR-induced PAI-2 expression suppresses IL-1β processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci USA, 2013, 110(40): 16079-16084. |
46. | Guo W, Sun Y, Liu W, et al. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 2014, 10(6): 972-985. |
47. | Zhao Y, Guo Q, Zhao K, et al. Small molecule GL-V9 protects against colitis-associated colorectal cancer by limiting NLRP3 inflammasome through autophagy. Oncoimmunology, 2017, 7(1): e1375640. doi: 10.1080/2162402X.2017.1375640. |
48. | Gazzillo A, Polidoro MA, Soldani C, et al. Relationship between epithelial-to-mesenchymal transition and tumor-associated macrophages in colorectal liver metastases. Int J Mol Sci, 2022, 23(24): 16197. doi: 10.3390/ijms232416197. |
49. | Fan T, Zhang M, Yang J, et al. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther, 2023, 8(1): 450. doi: 10.1038/s41392-023-01674-3. |
50. | Allen-Vercoe E, Jobin C. Fusobacterium and enterobacteriaceae: important players for CRC?. Immunol Lett, 2014, 162(2 Pt A): 54-61. |
51. | Li EH, Yang XB, Du YZ, et al. CXCL8 associated dendritic cell activation marker expression and recruitment as indicators of favorable outcomes in colorectal cancer. Front Immunol, 2021, 12: 667177. doi: 10.3389/fimmu.2021.667177. |
52. | Hu ZL, Teng XL, Zhang TY, et al. SENP3 senses oxidative stress to facilitate STING-dependent dendritic cell antitumor function. Mol Cell, 2021, 81(5): 940-952. e5. doi: 10.1016/j.molcel.2020.12.024. |
53. | Aponte-López A, Muñoz-Cruz S. Mast cells in the tumor microenvironment. Adv Exp Med Biol, 2020, 1273: 159-173. |
54. | Sakita JY, Elias-Oliveira J, Carlos D, et al. Mast cell-T cell axis alters development of colitis-dependent and colitis-independent colorectal tumours: potential for therapeutically targeting via mast cell inhibition. J Immunother Cancer, 2022, 10(10): e004653. doi: 10.1136/jitc-2022-004653. |
55. | Molfetta R, Paolini R. The controversial role of intestinal mast cells in colon cancer. Cells, 2023, 12(3): 459. doi: 10.3390/cells12030459. |
56. | Barrow AD, Edeling MA, Trifonov V, et al. Natural killer cells control tumor growth by sensing a growth factor. Cell, 2018, 172(3): 534-548. |
57. | Rocca YS, Roberti MP, Juliá EP, et al. Phenotypic and functional dysregulated blood NK cells in colorectal cancer patients can be activated by cetuximab plus IL-2 or IL-15. Front Immunol, 2016, 7: 413. doi: 10.3389/fimmu.2016.00413. |
58. | Sun Y, Hu H, Liu Z, et al. Macrophage STING signaling promotes NK cell to suppress colorectal cancer liver metastasis via 4-1BBL/4-1BB co-stimulation. J Immunother Cancer, 2023, 11(3): e006481. doi: 10.1136/jitc-2022-006481. |
59. | Fionda C, Scarno G, Stabile H, et al. NK cells and other cytotoxic innate lymphocytes in colorectal cancer progression and metastasis. Int J Mol Sci, 2022, 23(14): 7859. doi: 10.3390/ijms23147859. |
60. | Nguyen HPQ, Bae WK, Park MS, et al. Intensified NK cell therapy in combination with low-dose chemoradiotherapy against human colorectal cancer. Cancer Immunol Immunother, 2023, 72(12): 4089-4102. |
61. | Olguín JE, Medina-Andrade I, Rodríguez T, et al. Relevance of regulatory T cells during colorectal cancer development. Cancers (Basel), 2020, 12(7): 1888. doi: 10.3390/cancers12071888. |
62. | Aristin Revilla S, Kranenburg O, Coffer PJ. Colorectal cancer-infiltrating regulatory T Cells: functional heterogeneity, metabolic adaptation, and therapeutic targeting. Front Immunol, 2022, 13: 903564. doi: 10.3389/fimmu.2022.903564. |
63. | Xia C, Cai Y, Ren S, et al. Role of microbes in colorectal cancer therapy: Cross-talk between the microbiome and tumor microenvironment. Front Pharmacol, 2022, 13: 1051330. doi: 10.3389/fphar.2022.1051330. |
64. | Bai J, Chen H, Bai X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J Clin Lab Anal, 2021, 35(6): e23810. doi: 10.1002/jcla.23810. |
65. | Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love-hate relationship. Trends Cancer, 2016, 2(12): 747-757. |
66. | Michaud D, Steward CR, Mirlekar B, et al. Regulatory B cells in cancer. Immunol Rev, 2021, 299(1): 74-92. |
67. | Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol, 2017, 14(8): 662-674. |
68. | Hansen FJ, Wu Z, David P, et al. Tumor infiltration with CD20+CD73+ B cells correlates with better outcome in colorectal cancer. Int J Mol Sci, 2022, 23(9): 5163. doi: 10.3390/ijms23095163. |
69. | Wang W, Zhong Y, Zhuang Z, et al. Multiregion single-cell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clin Transl Med, 2021, 11(1): e253. doi: 10.1002/ctm2.253. |
- 1. 黄理宾, 黄秋实, 杨烈. 全球及中国的结直肠癌流行病学特征及防治: 2022《全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(5): 530-537.
- 2. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol, 2021, 14(10): 101174. doi: 10.1016/j.tranon.2021.101174.
- 3. 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2024, 46(3): 221-231.
- 4. 姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780.
- 5. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27(45): 5904-5912.
- 6. Paget S. The distribution of secondary growths in cancer of the breast. Lancet, 1889, 133: 571-573.
- 7. Aasen T, Mesnil M, Naus CC, et al. Gap junctions and cancer: communicating for 50 years. Nat Rev Cancer, 2016, 16(12): 775-788.
- 8. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev, 2018, 32(19-20): 1267-1284.
- 9. Zhao LY, Mei JX, Yu G, et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther, 2023, 8(1): 201. doi: 10.1038/s41392-023-01406-7.
- 10. Atkin W, Wooldrage K, Parkin DM, et al. Long term effects of once-only flexible sigmoidoscopy screening after 17 years of follow-up: the UK Flexible Sigmoidoscopy Screening randomised controlled trial. Lancet, 2017, 389(10076): 1299-1311.
- 11. Cardoso R, Guo F, Heisser T, et al. Proportion and stage distribution of screen-detected and non-screen-detected colorectal cancer in nine European countries: an international, population-based study. Lancet Gastroenterol Hepatol, 2022, 7(8): 711-723.
- 12. Dal Buono A, Gaiani F, Poliani L, et al. Juvenile polyposis syndrome: An overview. Best Pract Res Clin Gastroenterol, 2022, 58-59: 101799. doi: 10.1016/j.bpg.2022.101799.
- 13. Kidambi TD, Kohli DR, Samadder NJ, et al. Hereditary polyposis syndromes. Curr Treat Options Gastroenterol, 2019, 17(4): 650-665.
- 14. Kim B, Won D, Jang M, et al. Next-generation sequencing with comprehensive bioinformatics analysis facilitates somatic mosaic APC gene mutation detection in patients with familial adenomatous polyposis. BMC Med Genomics, 2019, 12(1): 103. doi: 10.1186/s12920-019-0553-0.
- 15. Zhang Y, Meng Q, Sun Q, et al. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab, 2021, 44: 101131. doi: 10.1016/j.molmet.2020.101131.
- 16. Yehia L, Keel E, Eng C. The clinical spectrum of PTEN mutations. Annu Rev Med, 2020, 71: 103-116.
- 17. Cerretelli G, Ager A, Arends MJ, et al. Molecular pathology of Lynch syndrome. J Pathol, 2020, 250(5): 518-531.
- 18. 周雄, 胡明, 蒋栋铭, 等. 结直肠癌进展相关关键分子事件研究进展. 肿瘤防治研究, 2023, 50(6): 609-615.
- 19. Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science, 2013, 339(6127): 1546-1558.
- 20. 康晓培, 郭振江, 刘防震. BAF57在结直肠癌组织中的表达及其对患者预后的影响. 癌变·畸变·突变, 2024, 36(5): 379-383.
- 21. Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res, 2019, 47(D1): D1005-D1012. doi: 10.1093/nar/gky1120.
- 22. Peters JM, Gonzalez FJ. The evolution of carcinogenesis. Toxicol Sci, 2018, 165(2): 272-276.
- 23. Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet, 2019, 394(10207): 1467-1480.
- 24. Bell HN, Rebernick RJ, Goyert J, et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell, 2022, 40(2): 185-200.
- 25. De Matteis R, Flak MB, Gonzalez-Nunez M, et al. Aspirin activates resolution pathways to reprogram T cell and macrophage responses in colitis-associated colorectal cancer. Sci Adv, 2022, 8(5): eabl5420. doi: 10.1126/sciadv.abl5420.
- 26. Zhu M, Ma Z, Zhang X, et al. C-reactive protein and cancer risk: a pan-cancer study of prospective cohort and Mendelian randomization analysis. BMC Med, 2022, 20(1): 301. doi: 10.1186/s12916-022-02506-x.
- 27. 赖智勇, 胡嘉欣, 李枝键, 等. 基于单细胞质谱流式技术分析膀胱肿瘤微环境中免疫细胞的组成. 中国癌症防治杂志, 2020, 12(2): 169-174.
- 28. Nam JH, Noh GT, Chung SS, et al. Validity of C-reactive protein as a surrogate marker for infectious complications after surgery for colorectal cancer. Surg Infect (Larchmt), 2023, 24(5): 488-494.
- 29. 杨驰, 罗长江. 结直肠癌炎症、免疫及胆固醇代谢背景研究进展. 国际肿瘤学杂志, 2022, 49(10): 630-634.
- 30. Yin Y, Wan J, Yu J, et al. Molecular pathogenesis of colitis-associated colorectal cancer: immunity, genetics, and intestinal microecology. Inflamm Bowel Dis, 2023, 29(10): 1648-1657.
- 31. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov, 2022, 12(1): 31-46.
- 32. Bosák J, Kohoutová D, Hrala M, et al. Escherichia coli from biopsies differ in virulence genes between patients with colorectal neoplasia and healthy controls. Front Microbiol, 2023, 14: 1141619. doi: 10.3389/fmicb.2023.1141619.
- 33. Li R, Jia Z, Trush MA. Defining ROS in biology and medicine. React Oxyg Species (Apex), 2016, 1(1): 9-21.
- 34. Valko M, Jomova K, Rhodes CJ, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol, 2016, 90(1): 1-37.
- 35. Lin S, Li Y, Zamyatnin AA, et al. Reactive oxygen species and colorectal cancer. J Cell Physiol, 2018, 233(7): 5119-5132.
- 36. Hussain SP, Amstad P, Raja K, et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res, 2000, 60(13): 3333-3337.
- 37. Neganova M, Liu J, Aleksandrova Y, et al. Therapeutic influence on important targets associated with chronic inflammation and oxidative stress in cancer treatment. Cancers (Basel), 2021, 13(23): 6062. doi: 10.3390/cancers13236062.
- 38. Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res, 2023, 72(1): 1-13.
- 39. Gong W, Shi Y, Ren J. Research progresses of molecular mechanism of pyroptosis and its related diseases. Immunobiology, 2020, 225(2): 151884. doi: 10.1016/j.imbio.2019.11.019.
- 40. Wei Y, Yang L, Pandeya A, et al. Pyroptosis-induced inflammation and tissue damage. J Mol Biol, 2022, 434(4): 167301. doi: 10.1016/j.jmb.2021.167301.
- 41. Liu Z, Wang C, Lin C. Pyroptosis as a double-edged sword: The pathogenic and therapeutic roles in inflammatory diseases and cancers. Life Sci, 2023, 318: 121498. doi: 10.1016/j.lfs.2023.121498.
- 42. Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev, 2023, 314(1): 229-249.
- 43. Lu L, Zhang Y, Tan X, et al. Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discov, 2022, 8(1): 338. doi: 10.1038/s41420-022-01101-6.
- 44. Hu D, Cui L, Zhang S, et al. Antitumor effect of tubeimoside-Ⅰ on murine colorectal cancers through PKM2-dependent pyroptosis and immunomodulation. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(6): 4069-4087.
- 45. Chuang SY, Yang CH, Chou CC, et al. TLR-induced PAI-2 expression suppresses IL-1β processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci USA, 2013, 110(40): 16079-16084.
- 46. Guo W, Sun Y, Liu W, et al. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 2014, 10(6): 972-985.
- 47. Zhao Y, Guo Q, Zhao K, et al. Small molecule GL-V9 protects against colitis-associated colorectal cancer by limiting NLRP3 inflammasome through autophagy. Oncoimmunology, 2017, 7(1): e1375640. doi: 10.1080/2162402X.2017.1375640.
- 48. Gazzillo A, Polidoro MA, Soldani C, et al. Relationship between epithelial-to-mesenchymal transition and tumor-associated macrophages in colorectal liver metastases. Int J Mol Sci, 2022, 23(24): 16197. doi: 10.3390/ijms232416197.
- 49. Fan T, Zhang M, Yang J, et al. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther, 2023, 8(1): 450. doi: 10.1038/s41392-023-01674-3.
- 50. Allen-Vercoe E, Jobin C. Fusobacterium and enterobacteriaceae: important players for CRC?. Immunol Lett, 2014, 162(2 Pt A): 54-61.
- 51. Li EH, Yang XB, Du YZ, et al. CXCL8 associated dendritic cell activation marker expression and recruitment as indicators of favorable outcomes in colorectal cancer. Front Immunol, 2021, 12: 667177. doi: 10.3389/fimmu.2021.667177.
- 52. Hu ZL, Teng XL, Zhang TY, et al. SENP3 senses oxidative stress to facilitate STING-dependent dendritic cell antitumor function. Mol Cell, 2021, 81(5): 940-952. e5. doi: 10.1016/j.molcel.2020.12.024.
- 53. Aponte-López A, Muñoz-Cruz S. Mast cells in the tumor microenvironment. Adv Exp Med Biol, 2020, 1273: 159-173.
- 54. Sakita JY, Elias-Oliveira J, Carlos D, et al. Mast cell-T cell axis alters development of colitis-dependent and colitis-independent colorectal tumours: potential for therapeutically targeting via mast cell inhibition. J Immunother Cancer, 2022, 10(10): e004653. doi: 10.1136/jitc-2022-004653.
- 55. Molfetta R, Paolini R. The controversial role of intestinal mast cells in colon cancer. Cells, 2023, 12(3): 459. doi: 10.3390/cells12030459.
- 56. Barrow AD, Edeling MA, Trifonov V, et al. Natural killer cells control tumor growth by sensing a growth factor. Cell, 2018, 172(3): 534-548.
- 57. Rocca YS, Roberti MP, Juliá EP, et al. Phenotypic and functional dysregulated blood NK cells in colorectal cancer patients can be activated by cetuximab plus IL-2 or IL-15. Front Immunol, 2016, 7: 413. doi: 10.3389/fimmu.2016.00413.
- 58. Sun Y, Hu H, Liu Z, et al. Macrophage STING signaling promotes NK cell to suppress colorectal cancer liver metastasis via 4-1BBL/4-1BB co-stimulation. J Immunother Cancer, 2023, 11(3): e006481. doi: 10.1136/jitc-2022-006481.
- 59. Fionda C, Scarno G, Stabile H, et al. NK cells and other cytotoxic innate lymphocytes in colorectal cancer progression and metastasis. Int J Mol Sci, 2022, 23(14): 7859. doi: 10.3390/ijms23147859.
- 60. Nguyen HPQ, Bae WK, Park MS, et al. Intensified NK cell therapy in combination with low-dose chemoradiotherapy against human colorectal cancer. Cancer Immunol Immunother, 2023, 72(12): 4089-4102.
- 61. Olguín JE, Medina-Andrade I, Rodríguez T, et al. Relevance of regulatory T cells during colorectal cancer development. Cancers (Basel), 2020, 12(7): 1888. doi: 10.3390/cancers12071888.
- 62. Aristin Revilla S, Kranenburg O, Coffer PJ. Colorectal cancer-infiltrating regulatory T Cells: functional heterogeneity, metabolic adaptation, and therapeutic targeting. Front Immunol, 2022, 13: 903564. doi: 10.3389/fimmu.2022.903564.
- 63. Xia C, Cai Y, Ren S, et al. Role of microbes in colorectal cancer therapy: Cross-talk between the microbiome and tumor microenvironment. Front Pharmacol, 2022, 13: 1051330. doi: 10.3389/fphar.2022.1051330.
- 64. Bai J, Chen H, Bai X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J Clin Lab Anal, 2021, 35(6): e23810. doi: 10.1002/jcla.23810.
- 65. Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love-hate relationship. Trends Cancer, 2016, 2(12): 747-757.
- 66. Michaud D, Steward CR, Mirlekar B, et al. Regulatory B cells in cancer. Immunol Rev, 2021, 299(1): 74-92.
- 67. Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol, 2017, 14(8): 662-674.
- 68. Hansen FJ, Wu Z, David P, et al. Tumor infiltration with CD20+CD73+ B cells correlates with better outcome in colorectal cancer. Int J Mol Sci, 2022, 23(9): 5163. doi: 10.3390/ijms23095163.
- 69. Wang W, Zhong Y, Zhuang Z, et al. Multiregion single-cell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clin Transl Med, 2021, 11(1): e253. doi: 10.1002/ctm2.253.