Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
| 1. | Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin, 2023, 73(1): 17-48. |
| 2. | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249. |
| 3. | Zheng R, Liu X, Zhang Y, et al. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol, 2024, 15: 1383978. doi: 10.3389/fimmu.2024.1383978. |
| 4. | Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer. Lancet, 2016, 388(10039): 73-85. |
| 5. | Bockorny B, Grossman JE, Hidalgo M. Facts and hopes in immunotherapy of pancreatic cancer. Clin Cancer Res, 2022, 28(21): 4606-4617. |
| 6. | Sherman MH, Beatty GL. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu Rev Pathol, 2023, 18: 123-148. |
| 7. | Flowers BM, Xu H, Mulligan AS, et al. Cell of origin influences pancreatic cancer subtype. Cancer Discov, 2021, 11(3): 660-677. |
| 8. | Guerra C, Collado M, Navas C, et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell, 2011, 19(6): 728-739. |
| 9. | Cortesi M, Zanoni M, Pirini F, et al. Pancreatic cancer and cellular senescence: tumor microenvironment under the spotlight. Int J Mol Sci, 2021, 23(1): 254. doi: 10.3390/ijms23010254. |
| 10. | Lelarge V, Capelle R, Oger F, et al. Senolytics: from pharmacological inhibitors to immunotherapies, a promising future for patients’ treatment. NPJ Aging, 2024, 10(1): 12. doi: 10.1038/s41514-024-00138-4. |
| 11. | Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-Ⅰ. Nature, 2020, 581(7806): 100-105. |
| 12. | Shi X, Wang M, Zhang Y, et al. Hypoxia activated HGF expression in pancreatic stellate cells confers resistance of pancreatic cancer cells to EGFR inhibition. EBioMedicine, 2022, 86: 104352. doi: 10.1016/j.ebiom.2022.104352. |
| 13. | Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol, 2021, 18(1): 9-34. |
| 14. | Zhou W, Zhou Y, Chen X, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials, 2021, 268: 120546. doi: 10.1016/j.biomaterials.2020. |
| 15. | Wood LD, Canto MI, Jaffee EM, et al. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology, 2022, 163(2): 386-402. e1. |
| 16. | Jin G, Hong W, Guo Y, et al. Molecular mechanism of pancreatic stellate cells activation in chronic pancreatitis and pancreatic cancer. J Cancer, 2020, 11(6): 1505-1515. |
| 17. | Ahmad RS, Eubank TD, Lukomski S, et al. Immune cell modulation of the extracellular matrix contributes to the pathogenesis of pancreatic cancer. Biomolecules, 2021, 11(6): 901. doi: 10.3390/biom11060901. |
| 18. | Froeling FE, Feig C, Chelala C, et al. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology, 2011, 141(4): 1486-1497, 1497. e1-14. |
| 19. | Wang Y, Chen K, Liu G, et al. Disruption of super-enhancers in activated pancreatic stellate cells facilitates chemotherapy and immunotherapy in pancreatic cancer. Adv Sci (Weinh), 2024, 11(16): e2308637. doi: 10.1002/advs.202308637. |
| 20. | Mace TA, Ameen Z, Collins A, et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res, 2013, 73(10): 3007-3018. |
| 21. | Li H, Liu D, Li K, et al. Pancreatic stellate cells and the interleukin family: linking fibrosis and immunity to pancreatic ductal adenocarcinoma (review). Mol Med Rep, 2024, 30(3): 159. doi: 10.3892/mmr.2024.13283. |
| 22. | Wartenberg M, Cibin S, Zlobec I, et al. Integrated genomic and immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance. Clin Cancer Res, 2018, 24(18): 4444-4454. |
| 23. | Cheung PF, Yang J, Fang R, et al. Progranulin mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of MHCⅠ expression. Nat Commun, 2022, 13(1): 156. doi: 10.1038/s41467-021-27088-9. |
| 24. | Steele NG, Carpenter ES, Kemp SB, et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat Cancer, 2020, 1(11): 1097-1112. |
| 25. | Dutta S, Ganguly A, Chatterjee K, et al. Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors. Biology (Basel), 2023, 12(2): 218. doi: 10.3390/biology12020218. |
| 26. | Chen Q, Yin H, He J, et al. Tumor microenvironment responsive CD8+ T cells and myeloid-derived suppressor cells to Trigger CD73 inhibitor AB680-based synergistic therapy for pancreatic cancer. Adv Sci (Weinh), 2023, 10(33): e2302498. doi: 10.1002/advs.202302498. |
| 27. | Chen IM, Donia M, Chamberlain CA, et al. Phase 2 study of ipilimumab, nivolumab, and tocilizumab combined with stereotactic body radiotherapy in patients with refractory pancreatic cancer (TRIPLE-R). Eur J Cancer, 2023, 180: 125-133. |
| 28. | Huang Y, Zhu N, Zheng X, et al. Intratumor microbiome analysis identifies positive association between megasphaera and survival of Chinese patients with pancreatic ductal adenocarcinomas. Front Immunol, 2022, 13: 785422. doi: 10.3389/fimmu.2022.785422. |
| 29. | Hu ZI, O’Reilly EM. Therapeutic developments in pancreatic cancer. Nat Rev Gastroenterol Hepatol, 2024, 21(1): 7-24. |
| 30. | Tang HY, Cao YZ, Zhou YW, et al. The power and the promise of CAR-mediated cell immunotherapy for clinical application in pancreatic cancer. J Adv Res, 2025, 67: 253-267. |
| 31. | McKenna MK, Ozcan A, Brenner D, et al. Novel banana lectin CAR-T cells to target pancreatic tumors and tumor-associated stroma. J Immunother Cancer, 2023, 11(1): e005891. doi: 10.1136/jitc-2022-00589.33 Zheng N, Fang J, Xue G, et al. Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance. Cancer Cell, 2022, 40(9): 973-985.e7. |
| 32. | Leidner R, Sanjuan Silva N, Huang H, et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N Engl J Med, 2022, 386(22): 2112-2119. |
| 33. | Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol, 2019, 16(7): 634-643. |
| 34. | Wei R, Zhang H, Cao J, et al. Type 1 T helper cell-based molecular subtypes and signature are associated with clinical outcome in pancreatic ductal adenocarcinoma. Front Cell Dev Biol, 2022, 10: 839893. doi: 10.3389/fcell.2022.839893. |
| 35. | Jacenik D, Karagiannidis I, Beswick EJ. Th2 cells inhibit growth of colon and pancreas cancers by promoting anti-tumorigenic responses from macrophages and eosinophils. Br J Cancer, 2023, 128(2): 387-397. |
| 36. | Khan IA, Singh N, Gunjan D, et al. Increased circulating Th17 cell populations in patients with pancreatic ductal adenocarcinoma. Immunogenetics, 2023, 75(5): 433-443. |
| 37. | Yi G, Guo S, Liu W, et al. Identification and functional analysis of heterogeneous FOXP3+ Treg cell subpopulations in human pancreatic ductal adenocarcinoma. Sci Bull (Beijing), 2018, 63(15): 972-981. |
| 38. | Gong R, Wang J, Xing Y, et al. Expression landscape of cancer-FOXP3 and its prognostic value in pancreatic adenocarcinoma. Cancer Lett, 2024, 590: 216838. doi: 10.1016/j.canlet.2024.216838. |
| 39. | Liu X, Xu J, Zhang B, et al. The reciprocal regulation between host tissue and immune cells in pancreatic ductal adenocarcinoma: new insights and therapeutic implications. Mol Cancer, 2019, 18(1): 184. doi: 10.1186/s12943-019-1117-9. |
| 40. | Zhang Y, Lazarus J, Steele NG, et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov, 2020, 10(3): 422-439. |
| 41. | Wang S, Zhao X, Wu S, et al. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res, 2023, 11(1): 34. doi: 10.1186/s40364-023-00475-8. |
| 42. | Choueiry F, Torok M, Shakya R, et al. CD200 promotes immunosuppression in the pancreatic tumor microenvironment. J Immunother Cancer, 2020, 8(1): e000189. doi: 10.1136/jitc-2019-000189. |
| 43. | Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 2016, 29(6): 832-845. |
| 44. | Stromnes IM, Brockenbrough JS, Izeradjene K, et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut, 2014, 63(11): 1769-1781. |
| 45. | Tsujikawa T, Crocenzi T, Durham JN, et al. Evaluation of cyclophosphamide/GVAX pancreas followed by listeria-mesothelin (CRS-207) with or without nivolumab in patients with pancreatic cancer. Clin Cancer Res, 2020, 26(14): 3578-3588. |
| 46. | Gao Z, Azar J, Zhu H, et al. Translational and oncologic significance of tertiary lymphoid structures in pancreatic adenocarcinoma. Front Immunol, 2024, 15: 1324093. doi: 10.3389/fimmu.2024.1324093. |
| 47. | Mirlekar B, Wang Y, Li S, et al. Balance between immunoregulatory B cells and plasma cells drives pancreatic tumor immunity. Cell Rep Med, 2022, 3(9): 100744. doi: 10.1016/j.xcrm.2022.100744. |
| 48. | Li S, Mirlekar B, Johnson BM, et al. STING-induced regulatory B cells compromise NK function in cancer immunity. Nature, 2022, 610(7931): 373-380. |
| 49. | Zhao Y, Shen M, Feng Y, et al. Regulatory B cells induced by pancreatic cancer cell-derived interleukin-18 promote immune tolerance via the PD-1/PD-L1 pathway. Oncotarget, 2017, 9(19): 14803-14814. |
| 50. | Tempero M, Oh DY, Tabernero J, et al. Ibrutinib in combination with nab-paclitaxel and gemcitabine for first-line treatment of patients with metastatic pancreatic adenocarcinoma: phase Ⅲ RESOLVE study. Ann Oncol, 2021, 32(5): 600-608. |
| 51. | Zhu H, Xu J, Wang W, et al. Intratumoral CD38+CD19+B cells associate with poor clinical outcomes and immunosuppression in patients with pancreatic ductal adenocarcinoma. EBioMedicine, 2024, 103: 105098. doi: 10.1016/j.ebiom.2024.105098. |
| 52. | Vanhersecke L, Brunet M, Guégan JP, et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat Cancer, 2021, 2(8): 794-802. |
| 53. | Padrón LJ, Maurer DM, O’Hara MH, et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat Med, 2022, 28(6): 1167-1177. |
| 54. | Teng KY, Mansour AG, Zhu Z, et al. Off-the-shelf prostate stem cell antigen-directed chimeric antigen receptor natural killer cell therapy to treat pancreatic cancer. Gastroenterology, 2022, 162(4): 1319-1333. |
| 55. | Parihar R, Rivas C, Huynh M, et al. NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors. Cancer Immunol Res, 2019, 7(3): 363-375. |
| 56. | Marofi F, Abdul-Rasheed OF, Rahman HS, et al. CAR-NK cell in cancer immunotherapy; a promising frontier. Cancer Sci, 2021, 112(9): 3427-3436. |
| 57. | Yang X, Li C, Yang H, et al. Programmed remodeling of the tumor milieu to enhance NK cell immunotherapy combined with chemotherapy for pancreatic cancer. Nano Lett, 2024, 24(11): 3421-3431. |
| 58. | Wang K, Wang L, Wang Y, et al. Reprogramming natural killer cells for cancer therapy. Mol Ther, 2024, 32(9): 2835-2855. |
| 59. | Zeng W, Li F, Jin S, et al. Functional polarization of tumor-associated macrophages dictated by metabolic reprogramming. J Exp Clin Cancer Res, 2023, 42(1): 245. doi: 10.1186/s13046-023-02832-9. |
| 60. | Kuziel G, Thompson V, D’Amato JV, et al. Stromal CCL2 signaling promotes mammary tumor fibrosis through recruitment of myeloid-lineage cells. Cancers (Basel), 2020, 12(8): 2083. doi: 10.3390/cancers12082083. |
| 61. | Kalbasi A, Komar C, Tooker GM, et al. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res, 2017, 23(1): 137-148. |
| 62. | Byrne KT, Betts CB, Mick R, et al. Neoadjuvant selicrelumab, an agonist CD40 antibody, induces changes in the tumor microenvironment in patients with resectable pancreatic cancer. Clin Cancer Res, 2021, 27(16): 4574-4586. |
| 63. | Lakhani NJ, Chow LQM, Gainor JF, et al. Evorpacept alone and in combination with pembrolizumab or trastuzumab in patients with advanced solid tumours (ASPEN-01): a first-in-human, open-label, multicentre, phase 1 dose-escalation and dose-expansion study. Lancet Oncol, 2021, 22(12): 1740-1751. |
| 64. | Xiang ZJ, Hu T, Wang Y, et al. Neutrophil-lymphocyte ratio (NLR) was associated with prognosis and immunomodulatory in patients with pancreatic ductal adenocarcinoma (PDAC). Biosci Rep, 2020, 40(6): BSR20201190. doi: 10.1042/BSR20201190. |
| 65. | Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer, 2020, 20(9): 485-503. |
| 66. | Jablonska J, Leschner S, Westphal K, et al. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest, 2010, 120(4): 1151-1164. |
| 67. | Ng MSF, Kwok I, Tan L, et al. Deterministic reprogramming of neutrophils within tumors. Science, 2024, 383(6679): eadf6493. doi: 10.1126/science.adf6493. |
| 68. | Han ZJ, Li YB, Yang LX, et al. Roles of the CXCL8-CXCR1/2 axis in the tumor microenvironment and immunotherapy. Molecules, 2021, 27(1): 137. doi: 10.3390/molecules27010137. |
| 69. | Gulhati P, Schalck A, Jiang S, et al. Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer. Nat Cancer, 2023, 4(1): 62-80. |
| 70. | Xie Y, Zhou T, Li X, et al. Targeting ESE3/EHF with nifurtimox inhibits CXCR2+ neutrophil infiltration and overcomes pancreatic cancer resistance to chemotherapy and immunotherapy. Gastroenterology, 2024, 167(2): 281-297. |
| 71. | Mahadevan KK, Dyevoich AM, Chen Y, et al. Type Ⅰ conventional dendritic cells facilitate immunotherapy in pancreatic cancer. Science, 2024, 384(6703): eadh4567. doi: 10.1126/science.adh4567. |
| 72. | Liu X, Zhuang Y, Huang W, et al. Interventional hydrogel microsphere vaccine as an immune amplifier for activated antitumour immunity after ablation therapy. Nat Commun, 2023, 14(1): 4106. doi: 10.1038/s41467-023-39759-w. |
| 73. | Perez-Penco M, Weis-Banke SE, Schina A, et al. TGFβ-derived immune modulatory vaccine: targeting the immunosuppressive and fibrotic tumor microenvironment in a murine model of pancreatic cancer. J Immunother Cancer, 2022, 10(12): e005491. doi: 10.1136/jitc-2022-005491. |
| 74. | Ray U, Pathoulas CL, Thirusangu P, et al. Exploiting LRRC15 as a novel therapeutic target in cancer. Cancer Res, 2022, 82(9): 1675-1681. |
| 75. | Oettle H, Seufferlein T, Luger T, et al. Final results of a phase Ⅰ/Ⅱ study in patients with pancreatic cancer, Malignant melanoma, and colorectal carcinoma with trabedersen. J Clin Oncol, 2012, 30: 4034-4034. |
| 76. | Yap T, Gainor J, McKean M, et al. 780 SRK-181, a latent TGFβ1 inhibitor: safety, efficacy, and biomarker results from the dose escalation portion of a phase I trial (DRAGON trial) in patients with advanced solid tumors. J ImmunoTherapy Cancer, 2022, 10: A812-A812. doi: 10.1136/jitc-2022-SITC2022.0780. |
| 77. | Bauer TM, Santoro A, Lin CC, et al. Phase Ⅰ/Ⅰb, open-label, multicenter, dose-escalation study of the anti-TGF-β monoclonal antibody, NIS793, in combination with spartalizumab in adult patients with advanced tumors. J Immunother Cancer, 2023, 11(11): e007353. doi: 10.1136/jitc-2023-007353. |
| 78. | Strauss J, Heery CR, Schlom J, et al. Phase Ⅰ trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clin Cancer Res, 2018, 24(6): 1287-1295. |
| 79. | Melisi D, Garcia-Carbonero R, Macarulla T, et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer, 2018, 119(10): 1208-1214. |
| 80. | Davies GCG, Dedi N, Jones PS, et al. Discovery of ginisortamab, a potent and novel anti-gremlin-1 antibody in clinical development for the treatment of cancer. MAbs, 2023, 15(1): 2289681. doi: 10.1080/19420862.2023.2289681. |
| 81. | Stouten I, van Montfoort N, Hawinkels LJAC. The tango between cancer-associated fibroblasts (CAFs) and immune cells in affecting immunotherapy efficacy in pancreatic cancer. Int J Mol Sci, 2023, 24(10): 8707. doi: 10.3390/ijms24108707. |
| 82. | Lepucki A, Orlińska K, Mielczarek-Palacz A, et al. The role of extracellular matrix proteins in breast cancer. J Clin Med, 2022, 11(5): 1250. doi: 10.3390/jcm11051250. |
| 83. | Steele NG, Biffi G, Kemp SB, et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Cancer Res, 2021, 27(7): 2023-2037. |
| 84. | Walter K, Omura N, Hong SM, et al. Overexpression of smoothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts. Clin Cancer Res, 2010, 16(6): 1781-1789. |
| 85. | Raymant M, Astuti Y, Alvaro-Espinosa L, et al. Macrophage-fibroblast JAK/STAT dependent crosstalk promotes liver metastatic outgrowth in pancreatic cancer. Nat Commun, 2024, 15(1): 3593. doi: 10.1038/s41467-024-47949-3. |
| 86. | Chen Y, Yang S, Tavormina J, et al. Oncogenic collagen Ⅰ homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell, 2022, 40(8): 818-834. e9. |
| 87. | Zhang X, Huang S, Guo J, et al. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (review). Int J Oncol, 2016, 48(5): 1783-1793. |
| 88. | Appunni S, Anand V, Khandelwal M, et al. Small leucine rich proteoglycans (decorin, biglycan and lumican) in cancer. Clin Chim Acta, 2019, 491: 1-7. |
| 89. | Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol, 2020, 17(8): 487-505. |
| 90. | Zhu X, Liu W, Cao Y, et al. Immune profiling of pancreatic cancer for radiotherapy with immunotherapy and targeted therapy: Biomarker analysis of a randomized phase 2 trial. Radiother Oncol, 2024, 190: 109941. doi: 10.1016/j.radonc.2023.109941. |
| 91. | Liu GH, Tan XY, Xu ZY, et al. REEP3 is a potential diagnostic and prognostic biomarker correlated with immune infiltration in pancreatic cancer. Sci Rep, 2024, 14(1): 13834. doi: 10.1038/s41598-024-64720-2. |
| 92. | Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature, 2019, 569(7754): 131-135. |
| 93. | 贺艳华, 谭明英. 不可逆电穿孔技术治疗胰腺癌的研究进展. 中国普外基础与临床杂志, 2025, 32(6): 786-792. |
| 94. | 蔡磊, 王先行, 王槐志. 胰腺癌免疫治疗的进展与瓶颈问题. 中国普外基础与临床杂志, 2023, 30(9): 1030-1036. |
- 1. Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin, 2023, 73(1): 17-48.
- 2. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
- 3. Zheng R, Liu X, Zhang Y, et al. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol, 2024, 15: 1383978. doi: 10.3389/fimmu.2024.1383978.
- 4. Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer. Lancet, 2016, 388(10039): 73-85.
- 5. Bockorny B, Grossman JE, Hidalgo M. Facts and hopes in immunotherapy of pancreatic cancer. Clin Cancer Res, 2022, 28(21): 4606-4617.
- 6. Sherman MH, Beatty GL. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu Rev Pathol, 2023, 18: 123-148.
- 7. Flowers BM, Xu H, Mulligan AS, et al. Cell of origin influences pancreatic cancer subtype. Cancer Discov, 2021, 11(3): 660-677.
- 8. Guerra C, Collado M, Navas C, et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell, 2011, 19(6): 728-739.
- 9. Cortesi M, Zanoni M, Pirini F, et al. Pancreatic cancer and cellular senescence: tumor microenvironment under the spotlight. Int J Mol Sci, 2021, 23(1): 254. doi: 10.3390/ijms23010254.
- 10. Lelarge V, Capelle R, Oger F, et al. Senolytics: from pharmacological inhibitors to immunotherapies, a promising future for patients’ treatment. NPJ Aging, 2024, 10(1): 12. doi: 10.1038/s41514-024-00138-4.
- 11. Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-Ⅰ. Nature, 2020, 581(7806): 100-105.
- 12. Shi X, Wang M, Zhang Y, et al. Hypoxia activated HGF expression in pancreatic stellate cells confers resistance of pancreatic cancer cells to EGFR inhibition. EBioMedicine, 2022, 86: 104352. doi: 10.1016/j.ebiom.2022.104352.
- 13. Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol, 2021, 18(1): 9-34.
- 14. Zhou W, Zhou Y, Chen X, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials, 2021, 268: 120546. doi: 10.1016/j.biomaterials.2020.
- 15. Wood LD, Canto MI, Jaffee EM, et al. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology, 2022, 163(2): 386-402. e1.
- 16. Jin G, Hong W, Guo Y, et al. Molecular mechanism of pancreatic stellate cells activation in chronic pancreatitis and pancreatic cancer. J Cancer, 2020, 11(6): 1505-1515.
- 17. Ahmad RS, Eubank TD, Lukomski S, et al. Immune cell modulation of the extracellular matrix contributes to the pathogenesis of pancreatic cancer. Biomolecules, 2021, 11(6): 901. doi: 10.3390/biom11060901.
- 18. Froeling FE, Feig C, Chelala C, et al. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology, 2011, 141(4): 1486-1497, 1497. e1-14.
- 19. Wang Y, Chen K, Liu G, et al. Disruption of super-enhancers in activated pancreatic stellate cells facilitates chemotherapy and immunotherapy in pancreatic cancer. Adv Sci (Weinh), 2024, 11(16): e2308637. doi: 10.1002/advs.202308637.
- 20. Mace TA, Ameen Z, Collins A, et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res, 2013, 73(10): 3007-3018.
- 21. Li H, Liu D, Li K, et al. Pancreatic stellate cells and the interleukin family: linking fibrosis and immunity to pancreatic ductal adenocarcinoma (review). Mol Med Rep, 2024, 30(3): 159. doi: 10.3892/mmr.2024.13283.
- 22. Wartenberg M, Cibin S, Zlobec I, et al. Integrated genomic and immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance. Clin Cancer Res, 2018, 24(18): 4444-4454.
- 23. Cheung PF, Yang J, Fang R, et al. Progranulin mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of MHCⅠ expression. Nat Commun, 2022, 13(1): 156. doi: 10.1038/s41467-021-27088-9.
- 24. Steele NG, Carpenter ES, Kemp SB, et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat Cancer, 2020, 1(11): 1097-1112.
- 25. Dutta S, Ganguly A, Chatterjee K, et al. Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors. Biology (Basel), 2023, 12(2): 218. doi: 10.3390/biology12020218.
- 26. Chen Q, Yin H, He J, et al. Tumor microenvironment responsive CD8+ T cells and myeloid-derived suppressor cells to Trigger CD73 inhibitor AB680-based synergistic therapy for pancreatic cancer. Adv Sci (Weinh), 2023, 10(33): e2302498. doi: 10.1002/advs.202302498.
- 27. Chen IM, Donia M, Chamberlain CA, et al. Phase 2 study of ipilimumab, nivolumab, and tocilizumab combined with stereotactic body radiotherapy in patients with refractory pancreatic cancer (TRIPLE-R). Eur J Cancer, 2023, 180: 125-133.
- 28. Huang Y, Zhu N, Zheng X, et al. Intratumor microbiome analysis identifies positive association between megasphaera and survival of Chinese patients with pancreatic ductal adenocarcinomas. Front Immunol, 2022, 13: 785422. doi: 10.3389/fimmu.2022.785422.
- 29. Hu ZI, O’Reilly EM. Therapeutic developments in pancreatic cancer. Nat Rev Gastroenterol Hepatol, 2024, 21(1): 7-24.
- 30. Tang HY, Cao YZ, Zhou YW, et al. The power and the promise of CAR-mediated cell immunotherapy for clinical application in pancreatic cancer. J Adv Res, 2025, 67: 253-267.
- 31. McKenna MK, Ozcan A, Brenner D, et al. Novel banana lectin CAR-T cells to target pancreatic tumors and tumor-associated stroma. J Immunother Cancer, 2023, 11(1): e005891. doi: 10.1136/jitc-2022-00589.33 Zheng N, Fang J, Xue G, et al. Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance. Cancer Cell, 2022, 40(9): 973-985.e7.
- 32. Leidner R, Sanjuan Silva N, Huang H, et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N Engl J Med, 2022, 386(22): 2112-2119.
- 33. Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol, 2019, 16(7): 634-643.
- 34. Wei R, Zhang H, Cao J, et al. Type 1 T helper cell-based molecular subtypes and signature are associated with clinical outcome in pancreatic ductal adenocarcinoma. Front Cell Dev Biol, 2022, 10: 839893. doi: 10.3389/fcell.2022.839893.
- 35. Jacenik D, Karagiannidis I, Beswick EJ. Th2 cells inhibit growth of colon and pancreas cancers by promoting anti-tumorigenic responses from macrophages and eosinophils. Br J Cancer, 2023, 128(2): 387-397.
- 36. Khan IA, Singh N, Gunjan D, et al. Increased circulating Th17 cell populations in patients with pancreatic ductal adenocarcinoma. Immunogenetics, 2023, 75(5): 433-443.
- 37. Yi G, Guo S, Liu W, et al. Identification and functional analysis of heterogeneous FOXP3+ Treg cell subpopulations in human pancreatic ductal adenocarcinoma. Sci Bull (Beijing), 2018, 63(15): 972-981.
- 38. Gong R, Wang J, Xing Y, et al. Expression landscape of cancer-FOXP3 and its prognostic value in pancreatic adenocarcinoma. Cancer Lett, 2024, 590: 216838. doi: 10.1016/j.canlet.2024.216838.
- 39. Liu X, Xu J, Zhang B, et al. The reciprocal regulation between host tissue and immune cells in pancreatic ductal adenocarcinoma: new insights and therapeutic implications. Mol Cancer, 2019, 18(1): 184. doi: 10.1186/s12943-019-1117-9.
- 40. Zhang Y, Lazarus J, Steele NG, et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov, 2020, 10(3): 422-439.
- 41. Wang S, Zhao X, Wu S, et al. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res, 2023, 11(1): 34. doi: 10.1186/s40364-023-00475-8.
- 42. Choueiry F, Torok M, Shakya R, et al. CD200 promotes immunosuppression in the pancreatic tumor microenvironment. J Immunother Cancer, 2020, 8(1): e000189. doi: 10.1136/jitc-2019-000189.
- 43. Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 2016, 29(6): 832-845.
- 44. Stromnes IM, Brockenbrough JS, Izeradjene K, et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut, 2014, 63(11): 1769-1781.
- 45. Tsujikawa T, Crocenzi T, Durham JN, et al. Evaluation of cyclophosphamide/GVAX pancreas followed by listeria-mesothelin (CRS-207) with or without nivolumab in patients with pancreatic cancer. Clin Cancer Res, 2020, 26(14): 3578-3588.
- 46. Gao Z, Azar J, Zhu H, et al. Translational and oncologic significance of tertiary lymphoid structures in pancreatic adenocarcinoma. Front Immunol, 2024, 15: 1324093. doi: 10.3389/fimmu.2024.1324093.
- 47. Mirlekar B, Wang Y, Li S, et al. Balance between immunoregulatory B cells and plasma cells drives pancreatic tumor immunity. Cell Rep Med, 2022, 3(9): 100744. doi: 10.1016/j.xcrm.2022.100744.
- 48. Li S, Mirlekar B, Johnson BM, et al. STING-induced regulatory B cells compromise NK function in cancer immunity. Nature, 2022, 610(7931): 373-380.
- 49. Zhao Y, Shen M, Feng Y, et al. Regulatory B cells induced by pancreatic cancer cell-derived interleukin-18 promote immune tolerance via the PD-1/PD-L1 pathway. Oncotarget, 2017, 9(19): 14803-14814.
- 50. Tempero M, Oh DY, Tabernero J, et al. Ibrutinib in combination with nab-paclitaxel and gemcitabine for first-line treatment of patients with metastatic pancreatic adenocarcinoma: phase Ⅲ RESOLVE study. Ann Oncol, 2021, 32(5): 600-608.
- 51. Zhu H, Xu J, Wang W, et al. Intratumoral CD38+CD19+B cells associate with poor clinical outcomes and immunosuppression in patients with pancreatic ductal adenocarcinoma. EBioMedicine, 2024, 103: 105098. doi: 10.1016/j.ebiom.2024.105098.
- 52. Vanhersecke L, Brunet M, Guégan JP, et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat Cancer, 2021, 2(8): 794-802.
- 53. Padrón LJ, Maurer DM, O’Hara MH, et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat Med, 2022, 28(6): 1167-1177.
- 54. Teng KY, Mansour AG, Zhu Z, et al. Off-the-shelf prostate stem cell antigen-directed chimeric antigen receptor natural killer cell therapy to treat pancreatic cancer. Gastroenterology, 2022, 162(4): 1319-1333.
- 55. Parihar R, Rivas C, Huynh M, et al. NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors. Cancer Immunol Res, 2019, 7(3): 363-375.
- 56. Marofi F, Abdul-Rasheed OF, Rahman HS, et al. CAR-NK cell in cancer immunotherapy; a promising frontier. Cancer Sci, 2021, 112(9): 3427-3436.
- 57. Yang X, Li C, Yang H, et al. Programmed remodeling of the tumor milieu to enhance NK cell immunotherapy combined with chemotherapy for pancreatic cancer. Nano Lett, 2024, 24(11): 3421-3431.
- 58. Wang K, Wang L, Wang Y, et al. Reprogramming natural killer cells for cancer therapy. Mol Ther, 2024, 32(9): 2835-2855.
- 59. Zeng W, Li F, Jin S, et al. Functional polarization of tumor-associated macrophages dictated by metabolic reprogramming. J Exp Clin Cancer Res, 2023, 42(1): 245. doi: 10.1186/s13046-023-02832-9.
- 60. Kuziel G, Thompson V, D’Amato JV, et al. Stromal CCL2 signaling promotes mammary tumor fibrosis through recruitment of myeloid-lineage cells. Cancers (Basel), 2020, 12(8): 2083. doi: 10.3390/cancers12082083.
- 61. Kalbasi A, Komar C, Tooker GM, et al. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res, 2017, 23(1): 137-148.
- 62. Byrne KT, Betts CB, Mick R, et al. Neoadjuvant selicrelumab, an agonist CD40 antibody, induces changes in the tumor microenvironment in patients with resectable pancreatic cancer. Clin Cancer Res, 2021, 27(16): 4574-4586.
- 63. Lakhani NJ, Chow LQM, Gainor JF, et al. Evorpacept alone and in combination with pembrolizumab or trastuzumab in patients with advanced solid tumours (ASPEN-01): a first-in-human, open-label, multicentre, phase 1 dose-escalation and dose-expansion study. Lancet Oncol, 2021, 22(12): 1740-1751.
- 64. Xiang ZJ, Hu T, Wang Y, et al. Neutrophil-lymphocyte ratio (NLR) was associated with prognosis and immunomodulatory in patients with pancreatic ductal adenocarcinoma (PDAC). Biosci Rep, 2020, 40(6): BSR20201190. doi: 10.1042/BSR20201190.
- 65. Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer, 2020, 20(9): 485-503.
- 66. Jablonska J, Leschner S, Westphal K, et al. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest, 2010, 120(4): 1151-1164.
- 67. Ng MSF, Kwok I, Tan L, et al. Deterministic reprogramming of neutrophils within tumors. Science, 2024, 383(6679): eadf6493. doi: 10.1126/science.adf6493.
- 68. Han ZJ, Li YB, Yang LX, et al. Roles of the CXCL8-CXCR1/2 axis in the tumor microenvironment and immunotherapy. Molecules, 2021, 27(1): 137. doi: 10.3390/molecules27010137.
- 69. Gulhati P, Schalck A, Jiang S, et al. Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer. Nat Cancer, 2023, 4(1): 62-80.
- 70. Xie Y, Zhou T, Li X, et al. Targeting ESE3/EHF with nifurtimox inhibits CXCR2+ neutrophil infiltration and overcomes pancreatic cancer resistance to chemotherapy and immunotherapy. Gastroenterology, 2024, 167(2): 281-297.
- 71. Mahadevan KK, Dyevoich AM, Chen Y, et al. Type Ⅰ conventional dendritic cells facilitate immunotherapy in pancreatic cancer. Science, 2024, 384(6703): eadh4567. doi: 10.1126/science.adh4567.
- 72. Liu X, Zhuang Y, Huang W, et al. Interventional hydrogel microsphere vaccine as an immune amplifier for activated antitumour immunity after ablation therapy. Nat Commun, 2023, 14(1): 4106. doi: 10.1038/s41467-023-39759-w.
- 73. Perez-Penco M, Weis-Banke SE, Schina A, et al. TGFβ-derived immune modulatory vaccine: targeting the immunosuppressive and fibrotic tumor microenvironment in a murine model of pancreatic cancer. J Immunother Cancer, 2022, 10(12): e005491. doi: 10.1136/jitc-2022-005491.
- 74. Ray U, Pathoulas CL, Thirusangu P, et al. Exploiting LRRC15 as a novel therapeutic target in cancer. Cancer Res, 2022, 82(9): 1675-1681.
- 75. Oettle H, Seufferlein T, Luger T, et al. Final results of a phase Ⅰ/Ⅱ study in patients with pancreatic cancer, Malignant melanoma, and colorectal carcinoma with trabedersen. J Clin Oncol, 2012, 30: 4034-4034.
- 76. Yap T, Gainor J, McKean M, et al. 780 SRK-181, a latent TGFβ1 inhibitor: safety, efficacy, and biomarker results from the dose escalation portion of a phase I trial (DRAGON trial) in patients with advanced solid tumors. J ImmunoTherapy Cancer, 2022, 10: A812-A812. doi: 10.1136/jitc-2022-SITC2022.0780.
- 77. Bauer TM, Santoro A, Lin CC, et al. Phase Ⅰ/Ⅰb, open-label, multicenter, dose-escalation study of the anti-TGF-β monoclonal antibody, NIS793, in combination with spartalizumab in adult patients with advanced tumors. J Immunother Cancer, 2023, 11(11): e007353. doi: 10.1136/jitc-2023-007353.
- 78. Strauss J, Heery CR, Schlom J, et al. Phase Ⅰ trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clin Cancer Res, 2018, 24(6): 1287-1295.
- 79. Melisi D, Garcia-Carbonero R, Macarulla T, et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer, 2018, 119(10): 1208-1214.
- 80. Davies GCG, Dedi N, Jones PS, et al. Discovery of ginisortamab, a potent and novel anti-gremlin-1 antibody in clinical development for the treatment of cancer. MAbs, 2023, 15(1): 2289681. doi: 10.1080/19420862.2023.2289681.
- 81. Stouten I, van Montfoort N, Hawinkels LJAC. The tango between cancer-associated fibroblasts (CAFs) and immune cells in affecting immunotherapy efficacy in pancreatic cancer. Int J Mol Sci, 2023, 24(10): 8707. doi: 10.3390/ijms24108707.
- 82. Lepucki A, Orlińska K, Mielczarek-Palacz A, et al. The role of extracellular matrix proteins in breast cancer. J Clin Med, 2022, 11(5): 1250. doi: 10.3390/jcm11051250.
- 83. Steele NG, Biffi G, Kemp SB, et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Cancer Res, 2021, 27(7): 2023-2037.
- 84. Walter K, Omura N, Hong SM, et al. Overexpression of smoothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts. Clin Cancer Res, 2010, 16(6): 1781-1789.
- 85. Raymant M, Astuti Y, Alvaro-Espinosa L, et al. Macrophage-fibroblast JAK/STAT dependent crosstalk promotes liver metastatic outgrowth in pancreatic cancer. Nat Commun, 2024, 15(1): 3593. doi: 10.1038/s41467-024-47949-3.
- 86. Chen Y, Yang S, Tavormina J, et al. Oncogenic collagen Ⅰ homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell, 2022, 40(8): 818-834. e9.
- 87. Zhang X, Huang S, Guo J, et al. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (review). Int J Oncol, 2016, 48(5): 1783-1793.
- 88. Appunni S, Anand V, Khandelwal M, et al. Small leucine rich proteoglycans (decorin, biglycan and lumican) in cancer. Clin Chim Acta, 2019, 491: 1-7.
- 89. Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol, 2020, 17(8): 487-505.
- 90. Zhu X, Liu W, Cao Y, et al. Immune profiling of pancreatic cancer for radiotherapy with immunotherapy and targeted therapy: Biomarker analysis of a randomized phase 2 trial. Radiother Oncol, 2024, 190: 109941. doi: 10.1016/j.radonc.2023.109941.
- 91. Liu GH, Tan XY, Xu ZY, et al. REEP3 is a potential diagnostic and prognostic biomarker correlated with immune infiltration in pancreatic cancer. Sci Rep, 2024, 14(1): 13834. doi: 10.1038/s41598-024-64720-2.
- 92. Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature, 2019, 569(7754): 131-135.
- 93. 贺艳华, 谭明英. 不可逆电穿孔技术治疗胰腺癌的研究进展. 中国普外基础与临床杂志, 2025, 32(6): 786-792.
- 94. 蔡磊, 王先行, 王槐志. 胰腺癌免疫治疗的进展与瓶颈问题. 中国普外基础与临床杂志, 2023, 30(9): 1030-1036.

