- 1. Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China;
- 2. College of Computer Science, Sichuan University, Chengdu 610065, P.R. China;
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | 王建波, 薛建新, 王艳阳, 姚刚. 国内肿瘤放射治疗领域基础研究的现状与展望. 中国肿瘤临床, 2024, 51(7): 354-356. |
2. | Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016, 316(22): 2402-2410. |
3. | Barragán-Montero A, Javaid U, Valdés G, et al. Artificial intelligence and machine learning for medical imaging: A technology review. Phys Med, 2021, 83: 242-256. |
4. | Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics (Basel), 2023, 13(17): 2760. |
5. | 李华玲, 李金凯, 王沛沛, 等. 人工智能在肿瘤放射治疗中的应用. 临床肿瘤学杂志, 2019, 24(10): 937-942. |
6. | Wang T, Lei Y, Tian Z, et al. Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy. J Med Imaging (Bellingham), 2019, 6(4): 043504. |
7. | Wu T, Zhou C, Gao X, et al. Low-dose cone beam ct reconstruction by deep neural network for image-guided radiation therapy. Beijing: 2023 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC). Piscataway: IEEE, 2023: 621-627. doi: 10.1109/CSIS-IAC60633.2023.10493218. |
8. | Kleber CEJ, Karius R, Naessens LE, et al. Advancements in supervised deep learning for metal artifact reduction in computed tomography: A systematic review. Eur J Radiol, 2024, 181: 111732. |
9. | Koike Y, Anetai Y, Takegawa H, et al. Deep learning-based metal artifact reduction using cycle-consistent adversarial network for intensity-modulated head and neck radiation therapy treatment planning. Phys Med, 2020, 78: 8-14. |
10. | iney GP, Whelan B, Oborn B, et al. MRI-linear accelerator radiotherapy systems. Clin Oncol (R Coll Radiol), 2018, 30(11): 686-691. |
11. | Emami H, Dong M, Nejad-Davarani SP, et al. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys, 2018, 45(7): 2867-2878. |
12. | Xiang L, Wang Q, Nie D, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Med Image Anal, 2018 Jul: 47: 31-44.47-31. |
13. | Lei Y, Harms J, Wang T, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys, 2019, 46(8): 3565-3581. |
14. | Alvarez Andres E, Fidon L, Vakalopoulou M, et al. Dosimetry-driven quality measure of brain pseudo computed tomography generated from deep learning for mri-only radiation therapy treatment planning. Int J Radiat Oncol Biol Phys, 2020, 108(3): 813-823. |
15. | Xu K, Cao J, Xia K, et al. Multichannel residual conditional GAN-leveraged abdominal pseudo-CT generation via Dixon MR images. IEEE Access, 2019, 7: 163823-163830. |
16. | Cusumano D, Lenkowicz J, Votta C, et al. A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Radiother Oncol, 2020, 153: 205-212. |
17. | Qi M, Li Y, Wu A, et al. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy. Med Phys, 2020, 47(4): 1880-1894. |
18. | Koike Y, Akino Y, Sumida I, et al. Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy. J Radiat Res, 2020, 61(1): 92-103. |
19. | Shafai-Erfani G, Lei Y, Liu Y, et al. MRI-based proton treatment planning for base of skull tumors. Int J Part Ther, 2019, 6(2): 12-25. |
20. | Fetty L, Löfstedt T, Heilemann G, et al. Investigating conditional GAN performance with different generator architectures, an ensemble model, and different MR scanners for MR-sCT conversion. Phys Med Biol, 2020, 65(10): 105004. |
21. | De Souza VLT, Marques BAD, Batagelo HC, et al. A review on generative adversarial networks for image generation. Comput Graph, 2023, 114: 13-25. |
22. | Li T, Sahu AK, Talwalkar A, et al. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag, 2020, 37(3): 50-60. |
23. | Zhang HM, Dong B. A review on deep learning in medical image reconstruction. J Oper Res Soc China, 2020, 8(2): 311-340. |
24. | Montague E, Roques T, Spencer K, et al. How long does contouring really take? Results of the Royal College of Radiologists Contouring Surveys. Clin Oncol (R Coll Radiol), 2024, 36(6): 335-342. |
25. | Levendag PC, Hoogeman M, Teguh D, et al. Atlas-based auto-segmentation of CT images: clinical evaluation of using auto-contouring in high-dose, high-precision radiotherapy of cancer in the head and neck. Int J Radiat Oncol Biol Phys, 2008, 72(1 Suppl): S401. doi: 10.1016/j.ijrobp.2008.06.1914. |
26. | Aljabar P, Heckemann RA, Hammers A, et al. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage, 2009, 46(3): 726-738. |
27. | Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Boston, MA, USA: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2015: 3431-3440. doi: 10.1109/CVPR.2015.7298965. |
28. | Çiçek Ö, Abdulkadir A, Lienkamp SS, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Athens, Greece: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016: 19th International Conference. Proceedings, Part Ⅱ 19. Cham: Springer, 2016: 424-432. doi:10.1007/978-3-319-46723-8_49. |
29. | Chen G, Li L, Dai Y, et al. AAU-Net: An adaptive attention U-Net for breast lesions segmentation in ultrasound images. IEEE Trans Med Imaging, 2023, 42(5): 1289-1300. |
30. | Hatamizadeh A, Nath V, Tang Y, et al. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images // Crimi A, Bakas S, eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer International Publishing, 2022: 272-284. doi: 10.1007/978-3-031-08999-2_22. |
31. | Tang Y, Yang D, Li W, et al. Self-supervised pre-training of Swin Transformers for 3D medical image analysis. New Orleans, LA, USA: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 20730-20740. doi: 10.1109/CVPR52688.2022.02009. |
32. | Yang J, Veeraraghavan H, Armato SG, et al. Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Med Phys, 2018, 45(10): 4568-4581. |
33. | Feng X, Qing K, Tustison NJ, et al. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Med Phys, 2019, 46(5): 2169-2180. |
34. | Dong X, Lei Y, Wang T, et al. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med Phys, 2019, 46(5): 2157-2168. |
35. | Lambert Z, Petitjean C, Dubray B, et al. SegTHOR: Segmentation of Thoracic Organs at Risk in CT images. Paris, France: 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA). Piscataway: IEEE, 2020: 1-6. doi: 10.1109/IPTA50016.2020.9286613. |
36. | 高文超, 王军良, 郑倩倩, 曹井丽, 李建雄. 不同图像分割软件用于胸部危及器官自动勾画的临床应用. 中国医疗设备, 2023, 38(7): 50-54. |
37. | Hu P, Wu F, Peng J, et al. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg, 2017, 12(3): 399-411. |
38. | Qin W, Wu J, Han F, et al. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation. Phys Med Biol, 2018, 63(9): 095017. |
39. | Ahn SH, Yeo AU, Kim KH, et al. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Radiat Oncol, 2019, 14(1): 213. |
40. | Jackson P, Hardcastle N, Dawe N, et al. Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front Oncol, 2018, 8: 215. |
41. | 吴泽静, 陈春晓, 陈志颖, 等. 联合影像数据集腹部多器官分割方法研究. 中国生物医学工程学报, 2023, 42(2): 129-138. |
42. | Liu J, Zhang Y, Chen JN, et al. CLIP-driven universal model for organ segmentation and tumor detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV 2023). Piscataway: IEEE, 2023: 21152-21164. doi: 10.1109/ICCV51070.2023.01937. |
43. | Doolan PJ, Charalambous S, Roussakis Y, et al. A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy. Front Oncol, 2023, 13: 1213068. |
44. | Costea M, Zlate A, Durand M, et al. Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system. Radiother Oncol, 2022, 177: 61-70. |
45. | Yamauchi R, Itazawa T, Kobayashi T, et al. Clinical evaluation of deep learning and atlas-based auto-segmentation for organs at risk delineation. Med Dosim, 2024, 49(3): 167-176. |
46. | Men K, Chen X, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol, 2017, 7: 315. doi: 10.3389/fonc.2017.00315. |
47. | Song Y, Hu J, Wang Q, et al. Young oncologists benefit more than experts from deep learning-based organs-at-risk contouring modeling in nasopharyngeal carcinoma radiotherapy: A multi-institution clinical study exploring working experience and institute group style factor. Clin Transl Radiat Oncol, 2023, 41: 100635. |
48. | Luo X, Liao W, He Y, et al. Deep learning-based accurate delineation of primary gross tumor volume of nasopharyngeal carcinoma on heterogeneous magnetic resonance imaging: A large-scale and multi-center study. Radiother Oncol, 2023, 180: 109480. |
49. | Byun HK, Chang JS, Choi MS, et al. Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy. Radiat Oncol, 2021, 16(1): 203. |
50. | Liu Z, Liu F, Chen W, et al. Automatic segmentation of clinical target volumes for post-modified radical mastectomy radiotherapy using convolutional neural networks. Front Oncol, 2021, 10: 581347. |
51. | Meixner E, Glogauer B, Klüter S, et al. Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation. Clin Transl Radiat Oncol, 2024, 49: 100855. |
52. | Zhang F, Wang Q, Li H. Automatic segmentation of the gross target volume in non-small cell lung cancer using a modified version of ResNet. Technol Cancer Res Treat, 2020, 19: 1533033820977486. doi: 10.1177/1533033820977486. |
53. | Li Z, Zhang S, Zhang L, et al. Deep learning-based internal target volume (ITV) prediction using cone-beam CT images in lung stereotactic body radiotherapy. Technol Cancer Res Treat, 2022, 21: 15330338211073380. |
54. | Ren X, Xiang L, Nie D, et al. Interleaved 3D-CNNs for joint segmentation of small-volume structures in head and neck CT images. Med Phys, 2018, 45(5): 2063-2075. |
55. | Zhu W, Huang Y, Zeng L, et al. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys, 2019, 46(2): 576-589. |
56. | 慕光睿, 杨燕平, 高耀宗, 冯前进. 基于多尺度三维卷积神经网络的头颈部危及器官分割方法. 南方医科大学学报, 2020, 40(4): 579-586. |
57. | Isensee F, Jäger PF, Full PM, et al. nnU-Net for brain tumor segmentation. Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries: 6th International Workshop. Lima, Peru: BrainLes 2020, Held in Conjunction with MICCAI 2020. Cham, Springer: Revised selected papers, Part Ⅱ 6, 2021: 118-132. doi: 10.1007/978-3-030-72084-1_11. |
58. | Ghaffari M, Sowmya A, Oliver R. Automated brain tumor segmentation using multimodal brain scans: a survey based on models submitted to the BraTS 2012-2018 challenges. IEEE Rev Biomed Eng, 2020, 13: 156-168. |
59. | Zhong Y, Yang Y, Fang Y, et al. A preliminary experience of implementing deep-learning based auto-segmentation in head and neck cancer: A study on real-world clinical cases. Front Oncol, 2021, 11: 638197. |
60. | Kosmin M, Ledsam J, Romera-Paredes B, et al. Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer. Radiother Oncol, 2019, 135: 130-140. |
61. | Chen W, Li Y, Dyer BA, et al. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images. Radiat Oncol, 2020, 15(1): 176. |
62. | Zhang Y, Wu J, Liu Y, et al. A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Med Image Anal, 2021, 68: 101884. |
63. | Jin D, Guo D, Ho TY, et al. DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy. Med Image Anal, 2021, 68: 101909. |
64. | Chanyavanich V, Das SK, Lee WR, et al. Knowledge-based IMRT treatment planning for prostate cancer. Med Phys, 2011, 38(5): 2515-2522. |
65. | Scaggion A, Fusella M, Roggio A, et al. Reducing inter- and intra-planner variability in radiotherapy plan output with a commercial knowledge-based planning solution. Phys Med, 2018, 53: 86-93. |
66. | Fogliata A, Reggiori G, Stravato A, et al. RapidPlan head and neck model: the objectives and possible clinical benefit. Radiat Oncol, 2017, 12(1): 73. doi: 10.1186/s13014-017-0803-2. |
67. | Chung CV, Khan MS, Olanrewaju A, et al. Knowledge-based planning for fully automated radiation therapy treatment planning of 10 different cancer sites. Radiother Oncol, 2025, 202: 110609. |
68. | Nguyen D, Long T, Jia X, et al. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep, 2019, 9(1): 1076. |
69. | Chen X, Men K, Li Y, et al. A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning. Med Phys, 2019, 46(1): 56-64. |
70. | Fan J, Xing L, Dong P, et al. Data-driven dose calculation algorithm based on deep U-Net. Phys Med Biol, 2020, 65(24): 245035. |
71. | Hou X, Cheng W, Shen J, et al. A deep learning model to predict dose distributions for breast cancer radiotherapy. Discov Oncol, 2025, 16(1): 165. |
72. | Xing Y, Nguyen D, Lu W, et al. Technical note: A feasibility study on deep learning-based radiotherapy dose calculation. Med Phys, 2020, 47(2): 753-758. |
73. | Barragán-Montero AM, Nguyen D, Lu W, et al. Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Med Phys, 2019, 46(8): 3679-3691. |
74. | Kandalan RN, Nguyen D, Rezaeian NH, et al. Dose prediction with deep learning for prostate cancer radiation therapy: Model adaptation to different treatment planning practices. Radiother Oncol, 2020, 153: 228-235. |
75. | Sumida I, Magome T, Das IJ, et al. A convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy. Phys Med, 2020, 72: 88-95.72-88. |
76. | Wu C, Nguyen D, Xing Y, et al. Improving proton dose calculation accuracy by using deep learning. Mach Learn Sci Technol, 2021, 2(1): 015017. |
77. | Zhang T, Bokrantz R, Olsson J. Probabilistic feature extraction, dose statistic prediction and dose mimicking for automated radiation therapy treatment planning. Med Phys, 2021, 48(9): 4730-4742. |
78. | Koike Y, Takegawa H, Anetai Y, et al. Patient-specific three-dimensional dose distribution prediction via deep learning for prostate cancer therapy: Improvement with the structure loss. Phys Med, 2023, 107: 102544. |
79. | Zhou J, Peng Z, Song Y, et al. A method of using deep learning to predict three-dimensional dose distributions for intensity-modulated radiotherapy of rectal cancer. J Appl Clin Med Phys, 2020, 21(5): 26-37. |
80. | Xie H, Tan T, Zhang H, et al. Dose prediction for cervical cancer in radiotherapy based on the beam channel generative adversarial network. Heliyon, 2024, 10(18): e37472. |
81. | Zhang G, Jiang Z, Zhu J, et al. Dose prediction for cervical cancer VMAT patients with a full-scale 3D-cGAN-based model and the comparison of different input data on the prediction results. Radiat Oncol, 2022, 17(1): 179. |
82. | Reijtenbagh D, Godart J, de Leeuw A, et al. Multi-center analysis of machine-learning predicted dose parameters in brachytherapy for cervical cancer. Radiother Oncol, 2022, 170: 169-175. |
83. | Mahmood R, Babier A, McNiven A, et al. Automated treatment planning in radiation therapy using generative adversarial networks. Proceedings of the 3rd Machine Learning for Healthcare Conference. Stanford, CA. PMLR (Proceedings of Machine Learning Research), 2018: 484-499. doi: 10.48550/arXiv.1807.06489. |
84. | Kearney V, Chan JW, Wang T, et al. DoseGAN: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation. Sci Rep, 2020, 10(1): 11073. |
85. | Li X, Wang C, Sheng Y, et al. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN). Med Phys, 2021, 48(6): 2714-2723. |
86. | Zhan B, Xiao J, Cao C, et al. Multi-constraint generative adversarial network for dose prediction in radiotherapy. Med Image Anal, 2022, 77: 102339. |
87. | Bohara G, Sadeghnejad Barkousaraie A, Jiang S, et al. Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy. Med Phys, 2020, 47(9): 3898-3912. |
88. | Lee H, Kim H, Kwak J, et al. Fluence-map generation for prostate intensity-modulated radiotherapy planning using a deep-neural-network. Sci Rep, 2019, 9(1): 15671. |
89. | Li X, Zhang J, Sheng Y, et al. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning. Phys Med Biol, 2020, 65(17): 175014. |
90. | Vandewinckele L, Willems S, Lambrecht M, et al. Treatment plan prediction for lung IMRT using deep learning based fluence map generation. Phys Med, 2022, 99: 44-54. |
91. | Cai W, Ding S, Li H, et al. Automatic IMRT treatment planning through fluence prediction and plan fine-tuning for nasopharyngeal carcinoma. Radiat Oncol, 2024, 19(1): 39. |
92. | Xu L, Zhu S, Wen N. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey. Phys Med Biol, 2022, 67(22): 22TR01. doi: 10.1088/1361-6560/ac98f8. |
93. | Li C, Guo Y, Lin X, et al. Deep reinforcement learning in radiation therapy planning optimization: A comprehensive review. Phys Med, 2024, 125: 104498. |
94. | Shen C, Gonzalez Y, Klages P, et al. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer. Phys Med Biol, 2019, 64(11): 115013. |
95. | Shen C, Nguyen D, Chen L, et al. Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning. Med Phys, 2020, 47(6): 2329-2336. |
96. | Shen C, Chen L, Jia X. A hierarchical deep reinforcement learning framework for intelligent automatic treatment planning of prostate cancer intensity modulated radiation therapy. Phys Med Biol, 2021, 66(13): 10.1088/1361-6560/ac09a2. |
97. | Shen C, Chen L, Gonzalez Y, et al. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy. Med Phys, 2021, 48(4): 1909-1920. |
98. | Hrinivich WT, Lee J. Artificial intelligence-based radiotherapy machine parameter optimization using reinforcement learning. Med Phys, 2020, 47(12): 6140-6150. |
99. | Hrinivich WT, Bhattacharya M, Mekki L, et al. Clinical VMAT machine parameter optimization for localized prostate cancer using deep reinforcement learning. Med Phys, 2024, 51(6): 3972-3984. |
100. | Tan D, Mohd Nasir NF, Abdul Manan H, et al. Prediction of toxicity outcomes following radiotherapy using deep learning-based models: A systematic review. Cancer Radiother, 2023, 27(5): 398-406. |
101. | Men K, Geng H, Zhong H, et al. A deep learning model for predicting xerostomia due to radiation therapy for head and neck squamous cell carcinoma in the RTOG 0522 clinical trial. Int J Radiat Oncol Biol Phys, 2019, 105(2): 440-447. |
102. | Gil M, Harrow S, Nailon W, et al. Predicting pulmonary toxicity in lung cancer patients with interstitial lung disease receiving SABR using machine learning: a secondary analysis of ASPIRE-ILD. Int J Radiat Oncol Biol Phys. 2024 Mar 15;120(4 Suppl): S171-S172. doi: 10.1016/j.ijrobp.2024.02.508. |
103. | Yang M, Ma J, Zhang C, et al. Multimodal data deep learning method for predicting symptomatic pneumonitis caused by lung cancer radiotherapy combined with immunotherapy. Front Immunol, 2025, 15: 1492399. |
104. | Ibragimov B, Toesca DAS, Chang DT, et al. Deep learning for identification of critical regions associated with toxicities after liver stereotactic body radiation therapy. Med Phys, 2020, 47(8): 3721-3731. |
105. | Yang Z, Olszewski D, He C, et al. Machine learning and statistical prediction of patient quality-of-life after prostate radiation therapy. Comput Biol Med, 2021, 129: 104127. |
106. | Elhaminia B, Gilbert A, Scarsbrook A, et al. Deep learning combining imaging, dose and clinical data for predicting bowel toxicity after pelvic radiotherapy. Phys Imaging Radiat Oncol, 2025, 33: 100710. |
107. | Chen M, Wu S, Zhao W, et al. Application of deep learning to auto-delineation of target volumes and organs at risk in radiotherapy. Cancer Radiother, 2022, 26(3): 494-501. |
108. | 张荣, 徐飞. 人工智能医学伦理问题及对策研究. 医学与哲学, 2020, 41(13): 14-19. |
109. | Li M, Xiong X, Xu B, et al. Chinese oncologists’ perspectives on integrating AI into clinical practice: Cross-sectional survey study. JMIR Form Res, 2024, 8: e53918. |
110. | Erdur AC, Rusche D, Scholz D, et al. Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives. Strahlenther Onkol, 2025, 201(3): 236-254. |
- 1. 王建波, 薛建新, 王艳阳, 姚刚. 国内肿瘤放射治疗领域基础研究的现状与展望. 中国肿瘤临床, 2024, 51(7): 354-356.
- 2. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016, 316(22): 2402-2410.
- 3. Barragán-Montero A, Javaid U, Valdés G, et al. Artificial intelligence and machine learning for medical imaging: A technology review. Phys Med, 2021, 83: 242-256.
- 4. Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics (Basel), 2023, 13(17): 2760.
- 5. 李华玲, 李金凯, 王沛沛, 等. 人工智能在肿瘤放射治疗中的应用. 临床肿瘤学杂志, 2019, 24(10): 937-942.
- 6. Wang T, Lei Y, Tian Z, et al. Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy. J Med Imaging (Bellingham), 2019, 6(4): 043504.
- 7. Wu T, Zhou C, Gao X, et al. Low-dose cone beam ct reconstruction by deep neural network for image-guided radiation therapy. Beijing: 2023 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC). Piscataway: IEEE, 2023: 621-627. doi: 10.1109/CSIS-IAC60633.2023.10493218.
- 8. Kleber CEJ, Karius R, Naessens LE, et al. Advancements in supervised deep learning for metal artifact reduction in computed tomography: A systematic review. Eur J Radiol, 2024, 181: 111732.
- 9. Koike Y, Anetai Y, Takegawa H, et al. Deep learning-based metal artifact reduction using cycle-consistent adversarial network for intensity-modulated head and neck radiation therapy treatment planning. Phys Med, 2020, 78: 8-14.
- 10. iney GP, Whelan B, Oborn B, et al. MRI-linear accelerator radiotherapy systems. Clin Oncol (R Coll Radiol), 2018, 30(11): 686-691.
- 11. Emami H, Dong M, Nejad-Davarani SP, et al. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys, 2018, 45(7): 2867-2878.
- 12. Xiang L, Wang Q, Nie D, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Med Image Anal, 2018 Jul: 47: 31-44.47-31.
- 13. Lei Y, Harms J, Wang T, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys, 2019, 46(8): 3565-3581.
- 14. Alvarez Andres E, Fidon L, Vakalopoulou M, et al. Dosimetry-driven quality measure of brain pseudo computed tomography generated from deep learning for mri-only radiation therapy treatment planning. Int J Radiat Oncol Biol Phys, 2020, 108(3): 813-823.
- 15. Xu K, Cao J, Xia K, et al. Multichannel residual conditional GAN-leveraged abdominal pseudo-CT generation via Dixon MR images. IEEE Access, 2019, 7: 163823-163830.
- 16. Cusumano D, Lenkowicz J, Votta C, et al. A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Radiother Oncol, 2020, 153: 205-212.
- 17. Qi M, Li Y, Wu A, et al. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy. Med Phys, 2020, 47(4): 1880-1894.
- 18. Koike Y, Akino Y, Sumida I, et al. Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy. J Radiat Res, 2020, 61(1): 92-103.
- 19. Shafai-Erfani G, Lei Y, Liu Y, et al. MRI-based proton treatment planning for base of skull tumors. Int J Part Ther, 2019, 6(2): 12-25.
- 20. Fetty L, Löfstedt T, Heilemann G, et al. Investigating conditional GAN performance with different generator architectures, an ensemble model, and different MR scanners for MR-sCT conversion. Phys Med Biol, 2020, 65(10): 105004.
- 21. De Souza VLT, Marques BAD, Batagelo HC, et al. A review on generative adversarial networks for image generation. Comput Graph, 2023, 114: 13-25.
- 22. Li T, Sahu AK, Talwalkar A, et al. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag, 2020, 37(3): 50-60.
- 23. Zhang HM, Dong B. A review on deep learning in medical image reconstruction. J Oper Res Soc China, 2020, 8(2): 311-340.
- 24. Montague E, Roques T, Spencer K, et al. How long does contouring really take? Results of the Royal College of Radiologists Contouring Surveys. Clin Oncol (R Coll Radiol), 2024, 36(6): 335-342.
- 25. Levendag PC, Hoogeman M, Teguh D, et al. Atlas-based auto-segmentation of CT images: clinical evaluation of using auto-contouring in high-dose, high-precision radiotherapy of cancer in the head and neck. Int J Radiat Oncol Biol Phys, 2008, 72(1 Suppl): S401. doi: 10.1016/j.ijrobp.2008.06.1914.
- 26. Aljabar P, Heckemann RA, Hammers A, et al. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage, 2009, 46(3): 726-738.
- 27. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Boston, MA, USA: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2015: 3431-3440. doi: 10.1109/CVPR.2015.7298965.
- 28. Çiçek Ö, Abdulkadir A, Lienkamp SS, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Athens, Greece: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016: 19th International Conference. Proceedings, Part Ⅱ 19. Cham: Springer, 2016: 424-432. doi:10.1007/978-3-319-46723-8_49.
- 29. Chen G, Li L, Dai Y, et al. AAU-Net: An adaptive attention U-Net for breast lesions segmentation in ultrasound images. IEEE Trans Med Imaging, 2023, 42(5): 1289-1300.
- 30. Hatamizadeh A, Nath V, Tang Y, et al. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images // Crimi A, Bakas S, eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer International Publishing, 2022: 272-284. doi: 10.1007/978-3-031-08999-2_22.
- 31. Tang Y, Yang D, Li W, et al. Self-supervised pre-training of Swin Transformers for 3D medical image analysis. New Orleans, LA, USA: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 20730-20740. doi: 10.1109/CVPR52688.2022.02009.
- 32. Yang J, Veeraraghavan H, Armato SG, et al. Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Med Phys, 2018, 45(10): 4568-4581.
- 33. Feng X, Qing K, Tustison NJ, et al. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Med Phys, 2019, 46(5): 2169-2180.
- 34. Dong X, Lei Y, Wang T, et al. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med Phys, 2019, 46(5): 2157-2168.
- 35. Lambert Z, Petitjean C, Dubray B, et al. SegTHOR: Segmentation of Thoracic Organs at Risk in CT images. Paris, France: 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA). Piscataway: IEEE, 2020: 1-6. doi: 10.1109/IPTA50016.2020.9286613.
- 36. 高文超, 王军良, 郑倩倩, 曹井丽, 李建雄. 不同图像分割软件用于胸部危及器官自动勾画的临床应用. 中国医疗设备, 2023, 38(7): 50-54.
- 37. Hu P, Wu F, Peng J, et al. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg, 2017, 12(3): 399-411.
- 38. Qin W, Wu J, Han F, et al. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation. Phys Med Biol, 2018, 63(9): 095017.
- 39. Ahn SH, Yeo AU, Kim KH, et al. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Radiat Oncol, 2019, 14(1): 213.
- 40. Jackson P, Hardcastle N, Dawe N, et al. Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front Oncol, 2018, 8: 215.
- 41. 吴泽静, 陈春晓, 陈志颖, 等. 联合影像数据集腹部多器官分割方法研究. 中国生物医学工程学报, 2023, 42(2): 129-138.
- 42. Liu J, Zhang Y, Chen JN, et al. CLIP-driven universal model for organ segmentation and tumor detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV 2023). Piscataway: IEEE, 2023: 21152-21164. doi: 10.1109/ICCV51070.2023.01937.
- 43. Doolan PJ, Charalambous S, Roussakis Y, et al. A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy. Front Oncol, 2023, 13: 1213068.
- 44. Costea M, Zlate A, Durand M, et al. Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system. Radiother Oncol, 2022, 177: 61-70.
- 45. Yamauchi R, Itazawa T, Kobayashi T, et al. Clinical evaluation of deep learning and atlas-based auto-segmentation for organs at risk delineation. Med Dosim, 2024, 49(3): 167-176.
- 46. Men K, Chen X, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol, 2017, 7: 315. doi: 10.3389/fonc.2017.00315.
- 47. Song Y, Hu J, Wang Q, et al. Young oncologists benefit more than experts from deep learning-based organs-at-risk contouring modeling in nasopharyngeal carcinoma radiotherapy: A multi-institution clinical study exploring working experience and institute group style factor. Clin Transl Radiat Oncol, 2023, 41: 100635.
- 48. Luo X, Liao W, He Y, et al. Deep learning-based accurate delineation of primary gross tumor volume of nasopharyngeal carcinoma on heterogeneous magnetic resonance imaging: A large-scale and multi-center study. Radiother Oncol, 2023, 180: 109480.
- 49. Byun HK, Chang JS, Choi MS, et al. Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy. Radiat Oncol, 2021, 16(1): 203.
- 50. Liu Z, Liu F, Chen W, et al. Automatic segmentation of clinical target volumes for post-modified radical mastectomy radiotherapy using convolutional neural networks. Front Oncol, 2021, 10: 581347.
- 51. Meixner E, Glogauer B, Klüter S, et al. Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation. Clin Transl Radiat Oncol, 2024, 49: 100855.
- 52. Zhang F, Wang Q, Li H. Automatic segmentation of the gross target volume in non-small cell lung cancer using a modified version of ResNet. Technol Cancer Res Treat, 2020, 19: 1533033820977486. doi: 10.1177/1533033820977486.
- 53. Li Z, Zhang S, Zhang L, et al. Deep learning-based internal target volume (ITV) prediction using cone-beam CT images in lung stereotactic body radiotherapy. Technol Cancer Res Treat, 2022, 21: 15330338211073380.
- 54. Ren X, Xiang L, Nie D, et al. Interleaved 3D-CNNs for joint segmentation of small-volume structures in head and neck CT images. Med Phys, 2018, 45(5): 2063-2075.
- 55. Zhu W, Huang Y, Zeng L, et al. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys, 2019, 46(2): 576-589.
- 56. 慕光睿, 杨燕平, 高耀宗, 冯前进. 基于多尺度三维卷积神经网络的头颈部危及器官分割方法. 南方医科大学学报, 2020, 40(4): 579-586.
- 57. Isensee F, Jäger PF, Full PM, et al. nnU-Net for brain tumor segmentation. Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries: 6th International Workshop. Lima, Peru: BrainLes 2020, Held in Conjunction with MICCAI 2020. Cham, Springer: Revised selected papers, Part Ⅱ 6, 2021: 118-132. doi: 10.1007/978-3-030-72084-1_11.
- 58. Ghaffari M, Sowmya A, Oliver R. Automated brain tumor segmentation using multimodal brain scans: a survey based on models submitted to the BraTS 2012-2018 challenges. IEEE Rev Biomed Eng, 2020, 13: 156-168.
- 59. Zhong Y, Yang Y, Fang Y, et al. A preliminary experience of implementing deep-learning based auto-segmentation in head and neck cancer: A study on real-world clinical cases. Front Oncol, 2021, 11: 638197.
- 60. Kosmin M, Ledsam J, Romera-Paredes B, et al. Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer. Radiother Oncol, 2019, 135: 130-140.
- 61. Chen W, Li Y, Dyer BA, et al. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images. Radiat Oncol, 2020, 15(1): 176.
- 62. Zhang Y, Wu J, Liu Y, et al. A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Med Image Anal, 2021, 68: 101884.
- 63. Jin D, Guo D, Ho TY, et al. DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy. Med Image Anal, 2021, 68: 101909.
- 64. Chanyavanich V, Das SK, Lee WR, et al. Knowledge-based IMRT treatment planning for prostate cancer. Med Phys, 2011, 38(5): 2515-2522.
- 65. Scaggion A, Fusella M, Roggio A, et al. Reducing inter- and intra-planner variability in radiotherapy plan output with a commercial knowledge-based planning solution. Phys Med, 2018, 53: 86-93.
- 66. Fogliata A, Reggiori G, Stravato A, et al. RapidPlan head and neck model: the objectives and possible clinical benefit. Radiat Oncol, 2017, 12(1): 73. doi: 10.1186/s13014-017-0803-2.
- 67. Chung CV, Khan MS, Olanrewaju A, et al. Knowledge-based planning for fully automated radiation therapy treatment planning of 10 different cancer sites. Radiother Oncol, 2025, 202: 110609.
- 68. Nguyen D, Long T, Jia X, et al. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep, 2019, 9(1): 1076.
- 69. Chen X, Men K, Li Y, et al. A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning. Med Phys, 2019, 46(1): 56-64.
- 70. Fan J, Xing L, Dong P, et al. Data-driven dose calculation algorithm based on deep U-Net. Phys Med Biol, 2020, 65(24): 245035.
- 71. Hou X, Cheng W, Shen J, et al. A deep learning model to predict dose distributions for breast cancer radiotherapy. Discov Oncol, 2025, 16(1): 165.
- 72. Xing Y, Nguyen D, Lu W, et al. Technical note: A feasibility study on deep learning-based radiotherapy dose calculation. Med Phys, 2020, 47(2): 753-758.
- 73. Barragán-Montero AM, Nguyen D, Lu W, et al. Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Med Phys, 2019, 46(8): 3679-3691.
- 74. Kandalan RN, Nguyen D, Rezaeian NH, et al. Dose prediction with deep learning for prostate cancer radiation therapy: Model adaptation to different treatment planning practices. Radiother Oncol, 2020, 153: 228-235.
- 75. Sumida I, Magome T, Das IJ, et al. A convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy. Phys Med, 2020, 72: 88-95.72-88.
- 76. Wu C, Nguyen D, Xing Y, et al. Improving proton dose calculation accuracy by using deep learning. Mach Learn Sci Technol, 2021, 2(1): 015017.
- 77. Zhang T, Bokrantz R, Olsson J. Probabilistic feature extraction, dose statistic prediction and dose mimicking for automated radiation therapy treatment planning. Med Phys, 2021, 48(9): 4730-4742.
- 78. Koike Y, Takegawa H, Anetai Y, et al. Patient-specific three-dimensional dose distribution prediction via deep learning for prostate cancer therapy: Improvement with the structure loss. Phys Med, 2023, 107: 102544.
- 79. Zhou J, Peng Z, Song Y, et al. A method of using deep learning to predict three-dimensional dose distributions for intensity-modulated radiotherapy of rectal cancer. J Appl Clin Med Phys, 2020, 21(5): 26-37.
- 80. Xie H, Tan T, Zhang H, et al. Dose prediction for cervical cancer in radiotherapy based on the beam channel generative adversarial network. Heliyon, 2024, 10(18): e37472.
- 81. Zhang G, Jiang Z, Zhu J, et al. Dose prediction for cervical cancer VMAT patients with a full-scale 3D-cGAN-based model and the comparison of different input data on the prediction results. Radiat Oncol, 2022, 17(1): 179.
- 82. Reijtenbagh D, Godart J, de Leeuw A, et al. Multi-center analysis of machine-learning predicted dose parameters in brachytherapy for cervical cancer. Radiother Oncol, 2022, 170: 169-175.
- 83. Mahmood R, Babier A, McNiven A, et al. Automated treatment planning in radiation therapy using generative adversarial networks. Proceedings of the 3rd Machine Learning for Healthcare Conference. Stanford, CA. PMLR (Proceedings of Machine Learning Research), 2018: 484-499. doi: 10.48550/arXiv.1807.06489.
- 84. Kearney V, Chan JW, Wang T, et al. DoseGAN: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation. Sci Rep, 2020, 10(1): 11073.
- 85. Li X, Wang C, Sheng Y, et al. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN). Med Phys, 2021, 48(6): 2714-2723.
- 86. Zhan B, Xiao J, Cao C, et al. Multi-constraint generative adversarial network for dose prediction in radiotherapy. Med Image Anal, 2022, 77: 102339.
- 87. Bohara G, Sadeghnejad Barkousaraie A, Jiang S, et al. Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy. Med Phys, 2020, 47(9): 3898-3912.
- 88. Lee H, Kim H, Kwak J, et al. Fluence-map generation for prostate intensity-modulated radiotherapy planning using a deep-neural-network. Sci Rep, 2019, 9(1): 15671.
- 89. Li X, Zhang J, Sheng Y, et al. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning. Phys Med Biol, 2020, 65(17): 175014.
- 90. Vandewinckele L, Willems S, Lambrecht M, et al. Treatment plan prediction for lung IMRT using deep learning based fluence map generation. Phys Med, 2022, 99: 44-54.
- 91. Cai W, Ding S, Li H, et al. Automatic IMRT treatment planning through fluence prediction and plan fine-tuning for nasopharyngeal carcinoma. Radiat Oncol, 2024, 19(1): 39.
- 92. Xu L, Zhu S, Wen N. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey. Phys Med Biol, 2022, 67(22): 22TR01. doi: 10.1088/1361-6560/ac98f8.
- 93. Li C, Guo Y, Lin X, et al. Deep reinforcement learning in radiation therapy planning optimization: A comprehensive review. Phys Med, 2024, 125: 104498.
- 94. Shen C, Gonzalez Y, Klages P, et al. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer. Phys Med Biol, 2019, 64(11): 115013.
- 95. Shen C, Nguyen D, Chen L, et al. Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning. Med Phys, 2020, 47(6): 2329-2336.
- 96. Shen C, Chen L, Jia X. A hierarchical deep reinforcement learning framework for intelligent automatic treatment planning of prostate cancer intensity modulated radiation therapy. Phys Med Biol, 2021, 66(13): 10.1088/1361-6560/ac09a2.
- 97. Shen C, Chen L, Gonzalez Y, et al. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy. Med Phys, 2021, 48(4): 1909-1920.
- 98. Hrinivich WT, Lee J. Artificial intelligence-based radiotherapy machine parameter optimization using reinforcement learning. Med Phys, 2020, 47(12): 6140-6150.
- 99. Hrinivich WT, Bhattacharya M, Mekki L, et al. Clinical VMAT machine parameter optimization for localized prostate cancer using deep reinforcement learning. Med Phys, 2024, 51(6): 3972-3984.
- 100. Tan D, Mohd Nasir NF, Abdul Manan H, et al. Prediction of toxicity outcomes following radiotherapy using deep learning-based models: A systematic review. Cancer Radiother, 2023, 27(5): 398-406.
- 101. Men K, Geng H, Zhong H, et al. A deep learning model for predicting xerostomia due to radiation therapy for head and neck squamous cell carcinoma in the RTOG 0522 clinical trial. Int J Radiat Oncol Biol Phys, 2019, 105(2): 440-447.
- 102. Gil M, Harrow S, Nailon W, et al. Predicting pulmonary toxicity in lung cancer patients with interstitial lung disease receiving SABR using machine learning: a secondary analysis of ASPIRE-ILD. Int J Radiat Oncol Biol Phys. 2024 Mar 15;120(4 Suppl): S171-S172. doi: 10.1016/j.ijrobp.2024.02.508.
- 103. Yang M, Ma J, Zhang C, et al. Multimodal data deep learning method for predicting symptomatic pneumonitis caused by lung cancer radiotherapy combined with immunotherapy. Front Immunol, 2025, 15: 1492399.
- 104. Ibragimov B, Toesca DAS, Chang DT, et al. Deep learning for identification of critical regions associated with toxicities after liver stereotactic body radiation therapy. Med Phys, 2020, 47(8): 3721-3731.
- 105. Yang Z, Olszewski D, He C, et al. Machine learning and statistical prediction of patient quality-of-life after prostate radiation therapy. Comput Biol Med, 2021, 129: 104127.
- 106. Elhaminia B, Gilbert A, Scarsbrook A, et al. Deep learning combining imaging, dose and clinical data for predicting bowel toxicity after pelvic radiotherapy. Phys Imaging Radiat Oncol, 2025, 33: 100710.
- 107. Chen M, Wu S, Zhao W, et al. Application of deep learning to auto-delineation of target volumes and organs at risk in radiotherapy. Cancer Radiother, 2022, 26(3): 494-501.
- 108. 张荣, 徐飞. 人工智能医学伦理问题及对策研究. 医学与哲学, 2020, 41(13): 14-19.
- 109. Li M, Xiong X, Xu B, et al. Chinese oncologists’ perspectives on integrating AI into clinical practice: Cross-sectional survey study. JMIR Form Res, 2024, 8: e53918.
- 110. Erdur AC, Rusche D, Scholz D, et al. Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives. Strahlenther Onkol, 2025, 201(3): 236-254.