In response to the “Healthy China 2030” strategy, the General Surgery Quality Control Center of Sichuan Province and the Thyroid Surgery Innovation and Transformation Branch of Sichuan Medical Science and Technology Innovation Association, jointly established 18 quality control (QC) nodes. This framework integrates evidence from many major domestic and international guidelines/ consensus and regional clinical QC practices in Western China. The system encompasses three core dimensions: diagnostic logic accuracy (e.g., TQC-01 for targeted screening to avoid over diagnosis by specifying high-risk ultrasonography indications); evidence-based treatment hierarchy (e.g., TQC-06/TQC-08 standardizing staging protocols for surgical indications); treatment outcome optimization (e.g., TQC-09 for intraoperative neural monitoring and TQC-16 for long-term quality-of-life tracking). A four-phase closed-loop management structure is implemented. Screening intervention: imaging restricted to high-risk populations. Standardized diagnosis: initial nodule evaluation with serological testing (TQC-02) and pathological verification (TQC-04). Treatment protocolization: stratified execution of surgery/ablation indications (TQC-10). Dynamic prognosis monitoring: 10-year survival tracking post-differentiated thyroid cancer surgery (TQC-17) and multidimensional ablation efficacy assessment (TQC-16). Under the collaborative governance of regional leading institutions, this framework has demonstrated significant impact: reduction of low-value care (e.g., avoidance of non-indicated biopsy for suspicious lesion <1 cm), elimination of critical process omissions (including mandatory TNM staging compliance), and advancement toward regional healthcare quality homogenization. These contributions establish a replicable paradigm for enhancing China’s national thyroid disease clinical quality ecosystem.
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Li Y, Teng D, Ba J, et al. Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of Mainland China. Thyroid, 2020, 30(4): 568-579. |
2. | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249. |
3. | International Agency for Research on Cancer. Global cancer observatory. [2025-07-19]. https://gco.iarc.fr/en. |
4. | Shan Z, Chen L, Lian X, et al. Iodine status and prevalence of thyroid disorders after introduction of mandatory universal salt iodization for 16 years in China: a cross-sectional study in 10 cities. Thyroid, 2016, 26(8): 1125-1130. |
5. | 中华医学会内分泌学分会, 中华医学会外科学分会甲状腺及代谢外科学组, 中国抗癌协会头颈肿瘤专业委员会, 等. 甲状腺结节和分化型甲状腺癌诊治指南 (第二版). 中华内分泌代谢杂志, 2023, 39(3): 181-226. |
6. | 中华医学会内分泌学分会, 中国医师协会内分泌代谢科医师分会, 中华医学会核医学分会, 等. 中国甲状腺功能亢进症和其他原因所致甲状腺毒症诊治指南. 中华内分泌代谢杂志, 2022, 38(8): 700-748. |
7. | Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1): 1-133. |
8. | van Trotsenburg P, Stoupa A, Léger J, et al. Congenital hypothyroidism: a 2020-2021 consensus guidelines update-An ENDO-European reference network initiative endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid, 2021, 31(3): 387-419. |
9. | 中华医学会内分泌学分会. 成人甲状腺功能减退症诊治指南. 中华内分泌代谢杂志, 2017, 33(2): 167-180. |
10. | Jonklaas J, Bianco AC, Bauer AJ, et al. Guidelines for the treatment of hypothyroidism: prepared by the American thyroid association task force on thyroid hormone replacement. Thyroid, 2014, 24(12): 1670-1751. |
11. | Tuttle RM, Ahuja S, Avram AM, et al. Controversies, consensus, and collaboration in the use of 131I therapy in differentiated thyroid cancer: a joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid, 2019, 29(4): 461-470. |
12. | 孙辉, 田文. 中国甲状腺及甲状旁腺手术中神经监测指南 (2023版). 中国实用外科杂志, 2023, 43(1): 23-33. |
13. | 朱精强, 田文, 苏安平. 甲状腺围手术期甲状旁腺功能保护指南 (2018版). 中国实用外科杂志, 2018, 38(10): 1108-1113. |
14. | 葛明华, 徐栋, 杨安奎, 等. 甲状腺良性结节、微小癌及颈部转移性淋巴结热消融治疗专家共识 (2018版). 中国肿瘤, 2018, 27(10): 768-773. |
15. | Zhao ZL, Wang SR, Kuo J, et al. 2024 international expert consensus on US-guided thermal ablation for T1N0M0 papillary thyroid cancer. Radiology, 2025, 315(1): e240347. doi: 10.1148/radiol.240347. |
16. | Sugitani I, Ito Y, Takeuchi D, et al. Indications and strategy for active surveillance of adult low-risk papillary thyroid microcarcinoma: consensus statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary Thyroid Microcarcinoma. Thyroid, 2021, 31(2): 183-192. |
17. | Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 2008, 336(7650): 924-926. |
18. | Europe, C. W. R. O. f. A short guide to cancer screening: increase effectiveness, maximize benefits and minimize harm. 2022. |
19. | Moses W, Weng J, Kebebew E. Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid, 2011, 21(4): 367-371. |
20. | Alexander EK, Doherty GM, Barletta JA. Management of thyroid nodules. Lancet Diabetes Endocrinol, 2022, 10(7): 540-548. |
21. | Lin JS, Bowles EJA, Williams SB, et al. Screening for thyroid cancer: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 2017, 317(18): 1888-1903. |
22. | La Vecchia C, Negri E. Thyroid cancer: the thyroid cancer epidemic - overdiagnosis or a real increase? Nat Rev Endocrinol, 2017, 13(6): 318-319. |
23. | Suh I, Vriens MR, Guerrero MA, et al. Serum thyroglobulin is a poor diagnostic biomarker of malignancy in follicular and Hurthle-cell neoplasms of the thyroid. Am J Surg, 2010, 200(1): 41-46. |
24. | Chambon G, Alovisetti C, Idoux-Louche C, et al. The use of preoperative routine measurement of basal serum thyrocalcitonin in candidates for thyroidectomy due to nodular thyroid disorders: results from 2 733 consecutive patients. J Clin Endocrinol Metab, 2011, 96(1): 75-81. |
25. | Cohen R, Campos JM, Salaün C, et al. Preoperative calcitonin levels are predictive of tumor size and postoperative calcitonin normalization in medullary thyroid carcinoma. Groupe d’Etudes des Tumeurs a Calcitonine (GETC). J Clin Endocrinol Metab, 2000, 85(2): 919-922. |
26. | 中华医学会超声医学分会浅表器官和血管学组, 中国甲状腺与乳腺超声人工智能联盟. 2020甲状腺结节超声恶性危险分层中国指南: C-TIRADS. 中华超声影像学杂志, 2021, 30(3): 185-200. |
27. | Shin JH, Baek JH, Chung J, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean society of thyroid radiology consensus statement and recommendations. Korean J Radiol, 2016, 17(3): 370-395. |
28. | Russ G, Bonnema SJ, Erdogan MF, et al. European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur Thyroid J, 2017, 6(5): 225-237. |
29. | 郭又铭, 霍金龙, 瞿锐, 等. 无负压对比负压细针穿刺在甲状腺结节中比较的Meta分析. 临床耳鼻咽喉头颈外科杂志, 2018, 32(11): 868-872. |
30. | Dwivedi SN, Kalaria T, Buch H. Thyroid autoantibodies. J Clin Pathol, 2023, 76(1): 19-28. |
31. | Vargas-Uricoechea H, Nogueira JP, Pinzón-Fernández MV, et al. The usefulness of thyroid antibodies in the diagnostic approach to autoimmune thyroid disease. Antibodies (Basel), 2023, 12(3): 48. doi: 10.3390/antib12030048. |
32. | Spencer CA. Clinical review: Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab, 2011, 96(12): 3615-3627. |
33. | Smith TJ, Hegedüs L. Graves’ Disease. N Engl J Med, 2016, 375(16): 1552-1565. |
34. | Iyer S, Bahn R. Immunopathogenesis of Graves’ ophthalmopathy: the role of the TSH receptor. Best Pract Res Clin Endocrinol Metab, 2012, 26(3): 281-289. |
35. | Eckstein AK, Plicht M, Lax H, et al. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab, 2006, 91(9): 3464-3470. |
36. | Chen CR, Pichurin P, Nagayama Y, et al. The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim. J Clin Invest, 2003, 111(12): 1897-1904. |
37. | Furmaniak J, Sanders J, Núñez Miguel R, et al. Mechanisms of action of TSHR autoantibodies. Horm Metab Res, 2015, 47(10): 735-752. |
38. | Dillon CF, Weisman MH, Miller FW. Population-based estimates of humoral autoimmunity from the U. S. National Health and Nutrition Examination Surveys, 1960-2014. PLoS One, 2020, 15(1): e0226516. doi: 10.1371/journal.pone.0226516. |
39. | Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES Ⅲ). J Clin Endocrinol Metab, 2002, 87(2): 489-499. |
40. | 中国抗癌协会甲状腺癌专业委员会, 中华医学会肿瘤学分会甲状腺肿瘤专业委员会, 中国研究型医院学会甲状腺疾病专业委员会, 等. 无充气腋窝入路腔镜甲状腺手术专家共识 (2022版). 中华内分泌外科杂志, 2021, 15(6): 557-563. |
41. | 王平, 吴国洋, 田文, 等. 经口腔前庭入路腔镜甲状腺手术专家共识 (2018版). 中国实用外科杂志, 2018, 38(10): 1104-1107. |
42. | 中国医师协会外科医师分会甲状腺外科医师委员会, 中国研究型医院学会甲状腺疾病专业委员会, 海峡两岸医药卫生交流协会海西甲状腺微创美容外科专家委员会, 等. 经胸前入路腔镜甲状腺手术专家共识 (2017版). 中国实用外科杂志, 2017, 37(12): 1369-1373. |
43. | 湖南省预防医学会甲状腺疾病防治专业委员会, 湖南省医学会肿瘤学专业委员会甲状腺肿瘤学组, 湖南省医学会普通外科专业委员会乳腺甲状腺学组, 等. 甲状腺手术后出血防治管理湖南省专家共识. 中国普通外科杂志, 2023, 32(5): 627-639. |
44. | Fundakowski CE, Hales NW, Agrawal N, et al. Surgical management of the recurrent laryngeal nerve in thyroidectomy: American Head and Neck Society Consensus Statement. Head Neck, 2018, 40(4): 663-675. |
45. | Chandrasekhar SS, Randolph GW, Seidman MD, et al. Clinical practice guideline: improving voice outcomes after thyroid surgery. Otolaryngol Head Neck Surg, 2013, 148(6 Suppl): S1-S37. |
46. | Wang T, Dionigi G, Zhang D, et al. Diagnosis, anatomy, and electromyography profiles of 73 nonrecurrent laryngeal nerves. Head Neck, 2018, 40(12): 2657-2663. |
47. | Yin C, Song B, Wang X. Anatomical variations in recurrent laryngeal nerves in thyroid surgery. Ear Nose Throat J, 2021, 100(10_suppl): 930S-936S. |
48. | Yuan Q, Wu G, Hou J, et al. Correlation between electrophysiological changes and outcomes of vocal cord function in 1 764 recurrent laryngeal nerves with visual integrity during thyroidectomy. Thyroid, 2020, 30(5): 739-745. |
49. | Barczyński M, Randolph GW, Cernea CR, et al. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: international Neural Monitoring Study Group standards guideline statement. Laryngoscope, 2013, 123 Suppl 4: S1-S14. |
50. | Wei T, Li Z, Jin J, et al. Autotransplantation of inferior parathyroid glands during central neck dissection for papillary thyroid carcinoma: a retrospective cohort study. Int J Surg, 2014, 12(12): 1286-1290. |
51. | Zhu Y, Chen X, Zhang H, et al. Carbon nanoparticle-guided central lymph node dissection in clinically node-negative patients with papillary thyroid carcinoma. Head Neck, 2016, 38(6): 840-845. |
52. | Su AP, Wang B, Gong YP, et al. Carbon nanoparticles facilitate lymph nodes dissection and parathyroid glands identification in reoperation of papillary thyroid cancer. Medicine (Baltimore), 2017, 96(44): e8380. doi: 10.1097/MD.0000000000008380. |
53. | Guerrero MA. Cryopreservation of parathyroid glands. Int J Endocrinol, 2010, 2010: 829540. doi: 10.1155/2010/829540. |
54. | Cohen MS, Dilley WG, Wells SA, et al. Long-term functionality of cryopreserved parathyroid autografts: a 13-year prospective analysis. Surgery, 2005, 138(6): 1033-1040. |
55. | 张进军, 夏文飞, 沈文状, 等. 免疫胶体金法甲状旁腺快速鉴定技术及其临床应用价值研究. 中国实用外科杂志, 2018, 38(2): 227-230, 237. |
56. | 卢秀波, 顾玲, 刘征. 甲状腺手术术后出血原因及处理. 中国实用外科杂志, 2018, 38(6): 605-607. |
57. | Ozdemir M, Makay O, Icoz G, et al. What adds Valsalva maneuver to hemostasis after Trendelenburg’s positioning during thyroid surgery? Gland Surg, 2017, 6(5): 433-436. |
58. | Tokaç M, Dumlu EG, Bozkurt B, et al. Effect of intraoperative Valsalva maneuver application on bleeding point detection and postoperative drainage after thyroidectomy surgeries. Int Surg, 2015, 100(6): 994-998. |
59. | Pacilli M, Pavone G, Gerundo A, et al. Clinical usefulness of the Valsalva manoeuvre to improve hemostasis during thyroidectomy. J Clin Med, 2022, 11(19): 5791. doi: 10.3390/jcm11195791. |
60. | Sinclair CF, Baek JH, Hands KE, et al. General principles for the safe performance, training, and adoption of ablation techniques for benign thyroid nodules: an American Thyroid Association statement. Thyroid, 2023, 33(10): 1150-1170. |
61. | Durante C, Hegedüs L, Czarniecka A, et al. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur Thyroid J, 2023, 12(5): e230067. doi: 10.1530/ETJ-23-0067. |
62. | Hahn SY, Shin JH, Na DG, et al. Ethanol ablation of the thyroid nodules: 2018 consensus statement by the Korean Society of Thyroid Radiology. Korean J Radiol, 2019, 20(4): 609-620. |
63. | Kihara M, Hirokawa M, Masuoka H, et al. Evaluation of cytologically benign solitary thyroid nodules by ultrasonography: a retrospective analysis of 1 877 cases. Auris Nasus Larynx, 2013, 40(3): 308-311. |
64. | Feng B, Liang P, Cheng Z, et al. Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules: experimental and clinical studies. Eur J Endocrinol, 2012, 166(6): 1031-1037. |
65. | Monchik JM, Donatini G, Iannuccilli J, et al. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg, 2006, 244(2): 296-304. |
66. | Wang L, Ge M, Xu D, et al. Ultrasonography-guided percutaneous radiofrequency ablation for cervical lymph node metastasis from thyroid carcinoma. J Cancer Res Ther, 2014, 10 Suppl: C144-C149. doi: 10.4103/0973-1482.145844. |
67. | Brabant G. Thyrotropin suppressive therapy in thyroid carcinoma: what are the targets? J Clin Endocrinol Metab, 2008, 93(4): 1167-1169. |
68. | Hovens GC, Stokkel MP, Kievit J, et al. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab, 2007, 92(7): 2610-2615. |
69. | Diessl S, Holzberger B, Mäder U, et al. Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin Endocrinol (Oxf), 2012, 76(4): 586-592. |
70. | Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid, 2006, 16(12): 1229-1242. |
71. | Lamartina L, Montesano T, Falcone R, et al. Is it worth suppressing TSH in low- and intermediate-risk papillary thyroid cancer patients before the first disease assessment? Endocr Pract, 2019, 25(2): 165-169. |
72. | Lee MC, Kim MJ, Choi HS, et al. Postoperative thyroid-stimulating hormone levels did not affect recurrence after thyroid lobectomy in patients with papillary thyroid cancer. Endocrinol Metab (Seoul), 2019, 34(2): 150-157. |
73. | Carhill AA, Litofsky DR, Ross DS, et al. Long-term outcomes following therapy in differentiated thyroid carcinoma: NTCTCS Registry analysis 1987-2012. J Clin Endocrinol Metab, 2015, 100(9): 3270-3279. |
74. | Cooper DS, Specker B, Ho M, et al. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid, 1998, 8(9): 737-744. |
75. | McGriff NJ, Csako G, Gourgiotis L, et al. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med, 2002, 34(7-8): 554-564. |
76. | Xu S, Huang Y, Huang H, et al. Optimal serum thyrotropin level for patients with papillary thyroid carcinoma after lobectomy. Thyroid, 2022, 32(2): 138-144. |
77. | Park JH, Lee YM, Lee YH, et al. The prognostic value of serum thyroid-stimulating hormone level post-lobectomy in low- and intermediate-risk papillary thyroid carcinoma. J Surg Oncol, 2018, 118(3): 390-396. |
78. | De Carlucci D Jr, Tavares MR, Obara MT, et al. Thyroid function after unilateral total lobectomy: risk factors for postoperative hypothyroidism. Arch Otolaryngol Head Neck Surg, 2008, 134(10): 1076-1079. |
79. | Li J, Zhang B, Bai Y, et al. Health-related quality of life analysis in differentiated thyroid carcinoma patients after thyroidectomy. Sci Rep, 2020, 10(1): 5765. doi: 10.1038/s41598-020-62731-3. |
80. | Cox C, Bosley M, Southerland LB, et al. Lobectomy for treatment of differentiated thyroid cancer: can patients avoid postoperative thyroid hormone supplementation and be compliant with the American Thyroid Association guidelines? Surgery, 2018, 163(1): 75-80. |
81. | Sugitani I, Fujimoto Y. Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: a prospective controlled study. Surgery, 2011, 150(6): 1250-1257. |
82. | Mazziotti G, Formenti AM, Frara S, et al. High prevalence of radiological vertebral fractures in women on thyroid-stimulating hormone-suppressive therapy for thyroid carcinoma. J Clin Endocrinol Metab, 2018, 103(3): 956-964. |
83. | Papaleontiou M, Banerjee M, Reyes-Gastelum D, et al. Risk of osteoporosis and fractures in patients with thyroid cancer: a case-control study in U. S. veterans. Oncologist, 2019, 24(9): 1166-1173. |
84. | Ku EJ, Yoo WS, Lee EK, et al. Effect of TSH suppression therapy on bone mineral density in differentiated thyroid cancer: a systematic review and meta-analysis. J Clin Endocrinol Metab, 2021, 106(12): 3655-3667. |
85. | Heemstra KA, Hamdy NA, Romijn JA, et al. The effects of thyrotropin-suppressive therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Thyroid, 2006, 16(6): 583-591. |
86. | Wang LY, Smith AW, Palmer FL, et al. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid, 2015, 25(3): 300-307. |
87. | Klein Hesselink EN, Klein Hesselink MS, de Bock GH, et al. Long-term cardiovascular mortality in patients with differentiated thyroid carcinoma: an observational study. J Clin Oncol, 2013, 31(32): 4046-4053. |
88. | Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev, 2008, 29(1): 76-131. |
89. | Sawin CT, Geller A, Wolf PA, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med, 1994, 331(19): 1249-1252. |
90. | Pajamäki N, Metso S, Hakala T, et al. Long-term cardiovascular morbidity and mortality in patients treated for differentiated thyroid cancer. Clin Endocrinol (Oxf), 2018, 88(2): 303-310. |
91. | Padovani RP, Kasamatsu TS, Nakabashi CC, et al. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid, 2012, 22(9): 926-930. |
92. | Mallick U, Harmer C, Yap B, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med, 2012, 366(18): 1674-1685. |
93. | Schlumberger M, Catargi B, Borget I, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med, 2012, 366(18): 1663-1673. |
94. | Dehbi HM, Mallick U, Wadsley J, et al. Recurrence after low-dose radioiodine ablation and recombinant human thyroid-stimulating hormone for differentiated thyroid cancer (HiLo): long-term results of an open-label, non-inferiority randomised controlled trial. Lancet Diabetes Endocrinol, 2019, 7(1): 44-51. |
95. | Schlumberger M, Leboulleux S, Catargi B, et al. Outcome after ablation in patients with low-risk thyroid cancer (ESTIMABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial. Lancet Diabetes Endocrinol, 2018, 6(8): 618-626. |
96. | Agency IAE. Radiation protection and safety in medical uses of ionizing radiation. IAEA Safety Standards for protecting people and the environment. |
97. | Giovanella L, Duntas LH. Management of endocrine disease: the role of rhTSH in the management of differentiated thyroid cancer: pros and cons. Eur J Endocrinol, 2019, 181(4): R133-R145. |
98. | Han JM, Kim WB, Yim JH, et al. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid, 2012, 22(8): 784-790. |
99. | Mazzaferri EL, Robbins RJ, Spencer CA, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab, 2003, 88(4): 1433-1441. |
100. | Schmidt D, Szikszai A, Linke R, et al. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med, 2009, 50(1): 18-23. |
101. | Zilioli V, Peli A, Panarotto MB, et al. Differentiated thyroid carcinoma: incremental diagnostic value of 131I SPECT/CT over planar whole body scan after radioiodine therapy. Endocrine, 2017, 56(3): 551-559. |
102. | Durante C, Montesano T, Attard M, et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab, 2012, 97(8): 2748-2753. |
103. | Torlontano M, Crocetti U, Augello G, et al. Comparative evaluation of recombinant human thyrotropin-stimulated thyroglobulin levels, 131I whole-body scintigraphy, and neck ultrasonography in the follow-up of patients with papillary thyroid microcarcinoma who have not undergone radioiodine therapy. J Clin Endocrinol Metab, 2006, 91(1): 60-63. |
104. | Algeciras-Schimnich A. Thyroglobulin measurement in the management of patients with differentiated thyroid cancer. Crit Rev Clin Lab Sci, 2018, 55(3): 205-218. |
105. | Qichang W, Lin B, Gege Z, et al. Diagnostic performance of 18F-FDG-PET/CT in DTC patients with thyroglobulin elevation and negative iodine scintigraphy: a meta-analysis. Eur J Endocrinol, 2019, 181(2): 93-102. |
106. | Ghossein R, Barletta JA, Bullock M, et al. Data set for reporting carcinoma of the thyroid: recommendations from the International Collaboration on Cancer Reporting. Hum Pathol, 2021, 110: 62-72. |
107. | Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr Pathol, 2022, 33(1): 27-63. |
108. | Zhang K, Wang X, Wei T, et al. Radioactive iodine therapy improves overall survival outcome in oncocytic carcinoma of the thyroid by reducing death risks from noncancer causes: a competing risk analysis of 4641 patients. Head Neck, 2024, 46(10): 2550-2568. |
109. | 刘志艳. 分化性甲状腺癌形态学谱系与分子生物学特征. 中华病理学杂志, 2020, 49(3): 284-288. |
110. | Ito Y, Miyauchi A, Inoue H, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg, 2010, 34(1): 28-35. |
111. | Ito Y, Miyauchi A, Kihara M, et al. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid, 2014, 24(1): 27-34. |
112. | Sugitani I, Toda K, Yamada K, et al. Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes. World J Surg, 2010, 34(6): 1222-1231. |
113. | Ito Y, Miyauchi A. Active surveillance of low-risk papillary thyroid microcarcinomas. Gland Surg, 2020, 9(5): 1663-1673. |
114. | Kwon H, Oh HS, Kim M, et al. Active surveillance for patients with papillary thyroid microcarcinoma: a single center's experience in Korea. J Clin Endocrinol Metab, 2017, 102(6): 1917-1925. |
115. | Tuttle RM, Fagin JA, Minkowitz G, et al. Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol Head Neck Surg, 2017, 143(10): 1015-1020. |
116. | Lindfors H, Karlsen M, Karlton E, et al. Thyroglobulin expression, Ki-67 index, and lymph node ratio in the prognostic assessment of papillary thyroid cancer. Sci Rep, 2023, 13(1): 1070. doi: 10.1038/s41598-023-27684-3. |
117. | Lindfors H, Ihre Lundgren C, Zedenius J, et al. The clinical significance of lymph node ratio and Ki-67 expression in papillary thyroid cancer. World J Surg, 2021, 45(7): 2155-2164. |
118. | Sim JS, Baek JH. Unresolved clinical issues in thermal ablation of benign thyroid nodules: regrowth at long-term follow-up. Korean J Radiol, 2021, 22(8): 1436-1440. |
119. | Bernardi S, Rosolen V, Barbone F, et al. Clinical outcomes of thermal ablation re-treatment of benign thyroid nodules: a multicenter study from the Italian Minimally Invasive Treatments of the Thyroid Group. Thyroid, 2024, 34(3): 360-370. |
120. | Li X, Lan Y, Li N, et al. Ultrasound-guided thermal ablation of Bethesda Ⅳ thyroid nodules: a pilot study. Front Endocrinol (Lausanne), 2021, 12: 674970. doi: 10.3389/fendo.2021.674970. |
121. | Sim JS, Baek JH. Long-term outcomes following thermal ablation of benign thyroid nodules as an alternative to surgery: the importance of controlling regrowth. Endocrinol Metab (Seoul), 2019, 34(2): 117-123. |
122. | Watt T, Bjorner JB, Groenvold M, et al. Development of a short version of the thyroid-related patient-reported outcome ThyPRO. Thyroid, 2015, 25(10): 1069-1079. |
123. | 薛霞, 徐旭娟, 顾志峰, 等. 中文版甲状腺疾病患者生活质量问卷简明版的信效度检验. 中国全科医学, 2017, 20(17): 2111-2117, 2122. |
124. | Zeng H, Zheng R, Sun K, et al. Cancer survival statistics in China 2019-2021: a multicenter, population-based study. J Natl Cancer Cent, 2024, 4(3): 203-213. |
125. | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263. |
- 1. Li Y, Teng D, Ba J, et al. Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of Mainland China. Thyroid, 2020, 30(4): 568-579.
- 2. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
- 3. International Agency for Research on Cancer. Global cancer observatory. [2025-07-19]. https://gco.iarc.fr/en.
- 4. Shan Z, Chen L, Lian X, et al. Iodine status and prevalence of thyroid disorders after introduction of mandatory universal salt iodization for 16 years in China: a cross-sectional study in 10 cities. Thyroid, 2016, 26(8): 1125-1130.
- 5. 中华医学会内分泌学分会, 中华医学会外科学分会甲状腺及代谢外科学组, 中国抗癌协会头颈肿瘤专业委员会, 等. 甲状腺结节和分化型甲状腺癌诊治指南 (第二版). 中华内分泌代谢杂志, 2023, 39(3): 181-226.
- 6. 中华医学会内分泌学分会, 中国医师协会内分泌代谢科医师分会, 中华医学会核医学分会, 等. 中国甲状腺功能亢进症和其他原因所致甲状腺毒症诊治指南. 中华内分泌代谢杂志, 2022, 38(8): 700-748.
- 7. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1): 1-133.
- 8. van Trotsenburg P, Stoupa A, Léger J, et al. Congenital hypothyroidism: a 2020-2021 consensus guidelines update-An ENDO-European reference network initiative endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid, 2021, 31(3): 387-419.
- 9. 中华医学会内分泌学分会. 成人甲状腺功能减退症诊治指南. 中华内分泌代谢杂志, 2017, 33(2): 167-180.
- 10. Jonklaas J, Bianco AC, Bauer AJ, et al. Guidelines for the treatment of hypothyroidism: prepared by the American thyroid association task force on thyroid hormone replacement. Thyroid, 2014, 24(12): 1670-1751.
- 11. Tuttle RM, Ahuja S, Avram AM, et al. Controversies, consensus, and collaboration in the use of 131I therapy in differentiated thyroid cancer: a joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid, 2019, 29(4): 461-470.
- 12. 孙辉, 田文. 中国甲状腺及甲状旁腺手术中神经监测指南 (2023版). 中国实用外科杂志, 2023, 43(1): 23-33.
- 13. 朱精强, 田文, 苏安平. 甲状腺围手术期甲状旁腺功能保护指南 (2018版). 中国实用外科杂志, 2018, 38(10): 1108-1113.
- 14. 葛明华, 徐栋, 杨安奎, 等. 甲状腺良性结节、微小癌及颈部转移性淋巴结热消融治疗专家共识 (2018版). 中国肿瘤, 2018, 27(10): 768-773.
- 15. Zhao ZL, Wang SR, Kuo J, et al. 2024 international expert consensus on US-guided thermal ablation for T1N0M0 papillary thyroid cancer. Radiology, 2025, 315(1): e240347. doi: 10.1148/radiol.240347.
- 16. Sugitani I, Ito Y, Takeuchi D, et al. Indications and strategy for active surveillance of adult low-risk papillary thyroid microcarcinoma: consensus statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary Thyroid Microcarcinoma. Thyroid, 2021, 31(2): 183-192.
- 17. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 2008, 336(7650): 924-926.
- 18. Europe, C. W. R. O. f. A short guide to cancer screening: increase effectiveness, maximize benefits and minimize harm. 2022.
- 19. Moses W, Weng J, Kebebew E. Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid, 2011, 21(4): 367-371.
- 20. Alexander EK, Doherty GM, Barletta JA. Management of thyroid nodules. Lancet Diabetes Endocrinol, 2022, 10(7): 540-548.
- 21. Lin JS, Bowles EJA, Williams SB, et al. Screening for thyroid cancer: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 2017, 317(18): 1888-1903.
- 22. La Vecchia C, Negri E. Thyroid cancer: the thyroid cancer epidemic - overdiagnosis or a real increase? Nat Rev Endocrinol, 2017, 13(6): 318-319.
- 23. Suh I, Vriens MR, Guerrero MA, et al. Serum thyroglobulin is a poor diagnostic biomarker of malignancy in follicular and Hurthle-cell neoplasms of the thyroid. Am J Surg, 2010, 200(1): 41-46.
- 24. Chambon G, Alovisetti C, Idoux-Louche C, et al. The use of preoperative routine measurement of basal serum thyrocalcitonin in candidates for thyroidectomy due to nodular thyroid disorders: results from 2 733 consecutive patients. J Clin Endocrinol Metab, 2011, 96(1): 75-81.
- 25. Cohen R, Campos JM, Salaün C, et al. Preoperative calcitonin levels are predictive of tumor size and postoperative calcitonin normalization in medullary thyroid carcinoma. Groupe d’Etudes des Tumeurs a Calcitonine (GETC). J Clin Endocrinol Metab, 2000, 85(2): 919-922.
- 26. 中华医学会超声医学分会浅表器官和血管学组, 中国甲状腺与乳腺超声人工智能联盟. 2020甲状腺结节超声恶性危险分层中国指南: C-TIRADS. 中华超声影像学杂志, 2021, 30(3): 185-200.
- 27. Shin JH, Baek JH, Chung J, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean society of thyroid radiology consensus statement and recommendations. Korean J Radiol, 2016, 17(3): 370-395.
- 28. Russ G, Bonnema SJ, Erdogan MF, et al. European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur Thyroid J, 2017, 6(5): 225-237.
- 29. 郭又铭, 霍金龙, 瞿锐, 等. 无负压对比负压细针穿刺在甲状腺结节中比较的Meta分析. 临床耳鼻咽喉头颈外科杂志, 2018, 32(11): 868-872.
- 30. Dwivedi SN, Kalaria T, Buch H. Thyroid autoantibodies. J Clin Pathol, 2023, 76(1): 19-28.
- 31. Vargas-Uricoechea H, Nogueira JP, Pinzón-Fernández MV, et al. The usefulness of thyroid antibodies in the diagnostic approach to autoimmune thyroid disease. Antibodies (Basel), 2023, 12(3): 48. doi: 10.3390/antib12030048.
- 32. Spencer CA. Clinical review: Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab, 2011, 96(12): 3615-3627.
- 33. Smith TJ, Hegedüs L. Graves’ Disease. N Engl J Med, 2016, 375(16): 1552-1565.
- 34. Iyer S, Bahn R. Immunopathogenesis of Graves’ ophthalmopathy: the role of the TSH receptor. Best Pract Res Clin Endocrinol Metab, 2012, 26(3): 281-289.
- 35. Eckstein AK, Plicht M, Lax H, et al. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab, 2006, 91(9): 3464-3470.
- 36. Chen CR, Pichurin P, Nagayama Y, et al. The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim. J Clin Invest, 2003, 111(12): 1897-1904.
- 37. Furmaniak J, Sanders J, Núñez Miguel R, et al. Mechanisms of action of TSHR autoantibodies. Horm Metab Res, 2015, 47(10): 735-752.
- 38. Dillon CF, Weisman MH, Miller FW. Population-based estimates of humoral autoimmunity from the U. S. National Health and Nutrition Examination Surveys, 1960-2014. PLoS One, 2020, 15(1): e0226516. doi: 10.1371/journal.pone.0226516.
- 39. Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES Ⅲ). J Clin Endocrinol Metab, 2002, 87(2): 489-499.
- 40. 中国抗癌协会甲状腺癌专业委员会, 中华医学会肿瘤学分会甲状腺肿瘤专业委员会, 中国研究型医院学会甲状腺疾病专业委员会, 等. 无充气腋窝入路腔镜甲状腺手术专家共识 (2022版). 中华内分泌外科杂志, 2021, 15(6): 557-563.
- 41. 王平, 吴国洋, 田文, 等. 经口腔前庭入路腔镜甲状腺手术专家共识 (2018版). 中国实用外科杂志, 2018, 38(10): 1104-1107.
- 42. 中国医师协会外科医师分会甲状腺外科医师委员会, 中国研究型医院学会甲状腺疾病专业委员会, 海峡两岸医药卫生交流协会海西甲状腺微创美容外科专家委员会, 等. 经胸前入路腔镜甲状腺手术专家共识 (2017版). 中国实用外科杂志, 2017, 37(12): 1369-1373.
- 43. 湖南省预防医学会甲状腺疾病防治专业委员会, 湖南省医学会肿瘤学专业委员会甲状腺肿瘤学组, 湖南省医学会普通外科专业委员会乳腺甲状腺学组, 等. 甲状腺手术后出血防治管理湖南省专家共识. 中国普通外科杂志, 2023, 32(5): 627-639.
- 44. Fundakowski CE, Hales NW, Agrawal N, et al. Surgical management of the recurrent laryngeal nerve in thyroidectomy: American Head and Neck Society Consensus Statement. Head Neck, 2018, 40(4): 663-675.
- 45. Chandrasekhar SS, Randolph GW, Seidman MD, et al. Clinical practice guideline: improving voice outcomes after thyroid surgery. Otolaryngol Head Neck Surg, 2013, 148(6 Suppl): S1-S37.
- 46. Wang T, Dionigi G, Zhang D, et al. Diagnosis, anatomy, and electromyography profiles of 73 nonrecurrent laryngeal nerves. Head Neck, 2018, 40(12): 2657-2663.
- 47. Yin C, Song B, Wang X. Anatomical variations in recurrent laryngeal nerves in thyroid surgery. Ear Nose Throat J, 2021, 100(10_suppl): 930S-936S.
- 48. Yuan Q, Wu G, Hou J, et al. Correlation between electrophysiological changes and outcomes of vocal cord function in 1 764 recurrent laryngeal nerves with visual integrity during thyroidectomy. Thyroid, 2020, 30(5): 739-745.
- 49. Barczyński M, Randolph GW, Cernea CR, et al. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: international Neural Monitoring Study Group standards guideline statement. Laryngoscope, 2013, 123 Suppl 4: S1-S14.
- 50. Wei T, Li Z, Jin J, et al. Autotransplantation of inferior parathyroid glands during central neck dissection for papillary thyroid carcinoma: a retrospective cohort study. Int J Surg, 2014, 12(12): 1286-1290.
- 51. Zhu Y, Chen X, Zhang H, et al. Carbon nanoparticle-guided central lymph node dissection in clinically node-negative patients with papillary thyroid carcinoma. Head Neck, 2016, 38(6): 840-845.
- 52. Su AP, Wang B, Gong YP, et al. Carbon nanoparticles facilitate lymph nodes dissection and parathyroid glands identification in reoperation of papillary thyroid cancer. Medicine (Baltimore), 2017, 96(44): e8380. doi: 10.1097/MD.0000000000008380.
- 53. Guerrero MA. Cryopreservation of parathyroid glands. Int J Endocrinol, 2010, 2010: 829540. doi: 10.1155/2010/829540.
- 54. Cohen MS, Dilley WG, Wells SA, et al. Long-term functionality of cryopreserved parathyroid autografts: a 13-year prospective analysis. Surgery, 2005, 138(6): 1033-1040.
- 55. 张进军, 夏文飞, 沈文状, 等. 免疫胶体金法甲状旁腺快速鉴定技术及其临床应用价值研究. 中国实用外科杂志, 2018, 38(2): 227-230, 237.
- 56. 卢秀波, 顾玲, 刘征. 甲状腺手术术后出血原因及处理. 中国实用外科杂志, 2018, 38(6): 605-607.
- 57. Ozdemir M, Makay O, Icoz G, et al. What adds Valsalva maneuver to hemostasis after Trendelenburg’s positioning during thyroid surgery? Gland Surg, 2017, 6(5): 433-436.
- 58. Tokaç M, Dumlu EG, Bozkurt B, et al. Effect of intraoperative Valsalva maneuver application on bleeding point detection and postoperative drainage after thyroidectomy surgeries. Int Surg, 2015, 100(6): 994-998.
- 59. Pacilli M, Pavone G, Gerundo A, et al. Clinical usefulness of the Valsalva manoeuvre to improve hemostasis during thyroidectomy. J Clin Med, 2022, 11(19): 5791. doi: 10.3390/jcm11195791.
- 60. Sinclair CF, Baek JH, Hands KE, et al. General principles for the safe performance, training, and adoption of ablation techniques for benign thyroid nodules: an American Thyroid Association statement. Thyroid, 2023, 33(10): 1150-1170.
- 61. Durante C, Hegedüs L, Czarniecka A, et al. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur Thyroid J, 2023, 12(5): e230067. doi: 10.1530/ETJ-23-0067.
- 62. Hahn SY, Shin JH, Na DG, et al. Ethanol ablation of the thyroid nodules: 2018 consensus statement by the Korean Society of Thyroid Radiology. Korean J Radiol, 2019, 20(4): 609-620.
- 63. Kihara M, Hirokawa M, Masuoka H, et al. Evaluation of cytologically benign solitary thyroid nodules by ultrasonography: a retrospective analysis of 1 877 cases. Auris Nasus Larynx, 2013, 40(3): 308-311.
- 64. Feng B, Liang P, Cheng Z, et al. Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules: experimental and clinical studies. Eur J Endocrinol, 2012, 166(6): 1031-1037.
- 65. Monchik JM, Donatini G, Iannuccilli J, et al. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg, 2006, 244(2): 296-304.
- 66. Wang L, Ge M, Xu D, et al. Ultrasonography-guided percutaneous radiofrequency ablation for cervical lymph node metastasis from thyroid carcinoma. J Cancer Res Ther, 2014, 10 Suppl: C144-C149. doi: 10.4103/0973-1482.145844.
- 67. Brabant G. Thyrotropin suppressive therapy in thyroid carcinoma: what are the targets? J Clin Endocrinol Metab, 2008, 93(4): 1167-1169.
- 68. Hovens GC, Stokkel MP, Kievit J, et al. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab, 2007, 92(7): 2610-2615.
- 69. Diessl S, Holzberger B, Mäder U, et al. Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin Endocrinol (Oxf), 2012, 76(4): 586-592.
- 70. Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid, 2006, 16(12): 1229-1242.
- 71. Lamartina L, Montesano T, Falcone R, et al. Is it worth suppressing TSH in low- and intermediate-risk papillary thyroid cancer patients before the first disease assessment? Endocr Pract, 2019, 25(2): 165-169.
- 72. Lee MC, Kim MJ, Choi HS, et al. Postoperative thyroid-stimulating hormone levels did not affect recurrence after thyroid lobectomy in patients with papillary thyroid cancer. Endocrinol Metab (Seoul), 2019, 34(2): 150-157.
- 73. Carhill AA, Litofsky DR, Ross DS, et al. Long-term outcomes following therapy in differentiated thyroid carcinoma: NTCTCS Registry analysis 1987-2012. J Clin Endocrinol Metab, 2015, 100(9): 3270-3279.
- 74. Cooper DS, Specker B, Ho M, et al. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid, 1998, 8(9): 737-744.
- 75. McGriff NJ, Csako G, Gourgiotis L, et al. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med, 2002, 34(7-8): 554-564.
- 76. Xu S, Huang Y, Huang H, et al. Optimal serum thyrotropin level for patients with papillary thyroid carcinoma after lobectomy. Thyroid, 2022, 32(2): 138-144.
- 77. Park JH, Lee YM, Lee YH, et al. The prognostic value of serum thyroid-stimulating hormone level post-lobectomy in low- and intermediate-risk papillary thyroid carcinoma. J Surg Oncol, 2018, 118(3): 390-396.
- 78. De Carlucci D Jr, Tavares MR, Obara MT, et al. Thyroid function after unilateral total lobectomy: risk factors for postoperative hypothyroidism. Arch Otolaryngol Head Neck Surg, 2008, 134(10): 1076-1079.
- 79. Li J, Zhang B, Bai Y, et al. Health-related quality of life analysis in differentiated thyroid carcinoma patients after thyroidectomy. Sci Rep, 2020, 10(1): 5765. doi: 10.1038/s41598-020-62731-3.
- 80. Cox C, Bosley M, Southerland LB, et al. Lobectomy for treatment of differentiated thyroid cancer: can patients avoid postoperative thyroid hormone supplementation and be compliant with the American Thyroid Association guidelines? Surgery, 2018, 163(1): 75-80.
- 81. Sugitani I, Fujimoto Y. Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: a prospective controlled study. Surgery, 2011, 150(6): 1250-1257.
- 82. Mazziotti G, Formenti AM, Frara S, et al. High prevalence of radiological vertebral fractures in women on thyroid-stimulating hormone-suppressive therapy for thyroid carcinoma. J Clin Endocrinol Metab, 2018, 103(3): 956-964.
- 83. Papaleontiou M, Banerjee M, Reyes-Gastelum D, et al. Risk of osteoporosis and fractures in patients with thyroid cancer: a case-control study in U. S. veterans. Oncologist, 2019, 24(9): 1166-1173.
- 84. Ku EJ, Yoo WS, Lee EK, et al. Effect of TSH suppression therapy on bone mineral density in differentiated thyroid cancer: a systematic review and meta-analysis. J Clin Endocrinol Metab, 2021, 106(12): 3655-3667.
- 85. Heemstra KA, Hamdy NA, Romijn JA, et al. The effects of thyrotropin-suppressive therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Thyroid, 2006, 16(6): 583-591.
- 86. Wang LY, Smith AW, Palmer FL, et al. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid, 2015, 25(3): 300-307.
- 87. Klein Hesselink EN, Klein Hesselink MS, de Bock GH, et al. Long-term cardiovascular mortality in patients with differentiated thyroid carcinoma: an observational study. J Clin Oncol, 2013, 31(32): 4046-4053.
- 88. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev, 2008, 29(1): 76-131.
- 89. Sawin CT, Geller A, Wolf PA, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med, 1994, 331(19): 1249-1252.
- 90. Pajamäki N, Metso S, Hakala T, et al. Long-term cardiovascular morbidity and mortality in patients treated for differentiated thyroid cancer. Clin Endocrinol (Oxf), 2018, 88(2): 303-310.
- 91. Padovani RP, Kasamatsu TS, Nakabashi CC, et al. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid, 2012, 22(9): 926-930.
- 92. Mallick U, Harmer C, Yap B, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med, 2012, 366(18): 1674-1685.
- 93. Schlumberger M, Catargi B, Borget I, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med, 2012, 366(18): 1663-1673.
- 94. Dehbi HM, Mallick U, Wadsley J, et al. Recurrence after low-dose radioiodine ablation and recombinant human thyroid-stimulating hormone for differentiated thyroid cancer (HiLo): long-term results of an open-label, non-inferiority randomised controlled trial. Lancet Diabetes Endocrinol, 2019, 7(1): 44-51.
- 95. Schlumberger M, Leboulleux S, Catargi B, et al. Outcome after ablation in patients with low-risk thyroid cancer (ESTIMABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial. Lancet Diabetes Endocrinol, 2018, 6(8): 618-626.
- 96. Agency IAE. Radiation protection and safety in medical uses of ionizing radiation. IAEA Safety Standards for protecting people and the environment.
- 97. Giovanella L, Duntas LH. Management of endocrine disease: the role of rhTSH in the management of differentiated thyroid cancer: pros and cons. Eur J Endocrinol, 2019, 181(4): R133-R145.
- 98. Han JM, Kim WB, Yim JH, et al. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid, 2012, 22(8): 784-790.
- 99. Mazzaferri EL, Robbins RJ, Spencer CA, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab, 2003, 88(4): 1433-1441.
- 100. Schmidt D, Szikszai A, Linke R, et al. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med, 2009, 50(1): 18-23.
- 101. Zilioli V, Peli A, Panarotto MB, et al. Differentiated thyroid carcinoma: incremental diagnostic value of 131I SPECT/CT over planar whole body scan after radioiodine therapy. Endocrine, 2017, 56(3): 551-559.
- 102. Durante C, Montesano T, Attard M, et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab, 2012, 97(8): 2748-2753.
- 103. Torlontano M, Crocetti U, Augello G, et al. Comparative evaluation of recombinant human thyrotropin-stimulated thyroglobulin levels, 131I whole-body scintigraphy, and neck ultrasonography in the follow-up of patients with papillary thyroid microcarcinoma who have not undergone radioiodine therapy. J Clin Endocrinol Metab, 2006, 91(1): 60-63.
- 104. Algeciras-Schimnich A. Thyroglobulin measurement in the management of patients with differentiated thyroid cancer. Crit Rev Clin Lab Sci, 2018, 55(3): 205-218.
- 105. Qichang W, Lin B, Gege Z, et al. Diagnostic performance of 18F-FDG-PET/CT in DTC patients with thyroglobulin elevation and negative iodine scintigraphy: a meta-analysis. Eur J Endocrinol, 2019, 181(2): 93-102.
- 106. Ghossein R, Barletta JA, Bullock M, et al. Data set for reporting carcinoma of the thyroid: recommendations from the International Collaboration on Cancer Reporting. Hum Pathol, 2021, 110: 62-72.
- 107. Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr Pathol, 2022, 33(1): 27-63.
- 108. Zhang K, Wang X, Wei T, et al. Radioactive iodine therapy improves overall survival outcome in oncocytic carcinoma of the thyroid by reducing death risks from noncancer causes: a competing risk analysis of 4641 patients. Head Neck, 2024, 46(10): 2550-2568.
- 109. 刘志艳. 分化性甲状腺癌形态学谱系与分子生物学特征. 中华病理学杂志, 2020, 49(3): 284-288.
- 110. Ito Y, Miyauchi A, Inoue H, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg, 2010, 34(1): 28-35.
- 111. Ito Y, Miyauchi A, Kihara M, et al. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid, 2014, 24(1): 27-34.
- 112. Sugitani I, Toda K, Yamada K, et al. Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes. World J Surg, 2010, 34(6): 1222-1231.
- 113. Ito Y, Miyauchi A. Active surveillance of low-risk papillary thyroid microcarcinomas. Gland Surg, 2020, 9(5): 1663-1673.
- 114. Kwon H, Oh HS, Kim M, et al. Active surveillance for patients with papillary thyroid microcarcinoma: a single center's experience in Korea. J Clin Endocrinol Metab, 2017, 102(6): 1917-1925.
- 115. Tuttle RM, Fagin JA, Minkowitz G, et al. Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol Head Neck Surg, 2017, 143(10): 1015-1020.
- 116. Lindfors H, Karlsen M, Karlton E, et al. Thyroglobulin expression, Ki-67 index, and lymph node ratio in the prognostic assessment of papillary thyroid cancer. Sci Rep, 2023, 13(1): 1070. doi: 10.1038/s41598-023-27684-3.
- 117. Lindfors H, Ihre Lundgren C, Zedenius J, et al. The clinical significance of lymph node ratio and Ki-67 expression in papillary thyroid cancer. World J Surg, 2021, 45(7): 2155-2164.
- 118. Sim JS, Baek JH. Unresolved clinical issues in thermal ablation of benign thyroid nodules: regrowth at long-term follow-up. Korean J Radiol, 2021, 22(8): 1436-1440.
- 119. Bernardi S, Rosolen V, Barbone F, et al. Clinical outcomes of thermal ablation re-treatment of benign thyroid nodules: a multicenter study from the Italian Minimally Invasive Treatments of the Thyroid Group. Thyroid, 2024, 34(3): 360-370.
- 120. Li X, Lan Y, Li N, et al. Ultrasound-guided thermal ablation of Bethesda Ⅳ thyroid nodules: a pilot study. Front Endocrinol (Lausanne), 2021, 12: 674970. doi: 10.3389/fendo.2021.674970.
- 121. Sim JS, Baek JH. Long-term outcomes following thermal ablation of benign thyroid nodules as an alternative to surgery: the importance of controlling regrowth. Endocrinol Metab (Seoul), 2019, 34(2): 117-123.
- 122. Watt T, Bjorner JB, Groenvold M, et al. Development of a short version of the thyroid-related patient-reported outcome ThyPRO. Thyroid, 2015, 25(10): 1069-1079.
- 123. 薛霞, 徐旭娟, 顾志峰, 等. 中文版甲状腺疾病患者生活质量问卷简明版的信效度检验. 中国全科医学, 2017, 20(17): 2111-2117, 2122.
- 124. Zeng H, Zheng R, Sun K, et al. Cancer survival statistics in China 2019-2021: a multicenter, population-based study. J Natl Cancer Cent, 2024, 4(3): 203-213.
- 125. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.