1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
|
9. |
|
10. |
|
11. |
Chen C, Huang X, Ying Z, et al. Can glypican-3 be a disease-specific biomarker? Clin Transl Med, 2017, 6(1): 18.
|
12. |
|
13. |
|
14. |
|
15. |
|
16. |
Imon RR, Aktar S, Morshed N, et al. Biological and clinical significance of the glypican-3 gene in human lung adenocarcinoma: An in silico analysis. Medicine (Baltimore), 2023, 102(45): p e35347.
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
|
22. |
|
23. |
|
24. |
|
25. |
|
26. |
|
27. |
|
28. |
|
29. |
|
30. |
|
31. |
|
32. |
|
33. |
|
34. |
|
35. |
|
36. |
|
37. |
|
38. |
Som R, Fink BD, Rauckhorst AJ, et al. Mitochondrial glutamic-oxaloacetic transaminase (GOT2) in the growth of C2C12 myoblasts. J Bioenerg Biomembr, 2025.
|
39. |
Johnson MO, Wolf MM, Madden MZ, et al. Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 2018, 175(7): 1780-95. e19.
|
40. |
|
41. |
|
42. |
|
43. |
|
44. |
|
45. |
|
46. |
|
47. |
|
48. |
|
49. |
|