| 1. |
Martinez FJ, Collard HR, Pardo A, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers, 2017, 3: 17074.
|
| 2. |
Koudstaal T, Funke-Chambour M, Kreuter M, et al. Pulmonary fibrosis: from pathogenesis to clinical decision-making. Trends Mol Med, 2023, 29(12): 1076-1087.
|
| 3. |
George P M, Wells A U, Jenkins R G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med, 2020, 8(8): 807-815.
|
| 4. |
Fadista J, Kraven L M, Karjalainen J, et al. Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity. EBioMedicine, 2021, 65: 103277.
|
| 5. |
Gallay L, Uzunhan Y, Borie R, et al. Risk Factors for Mortality after COVID-19 in Patients with Preexisting Interstitial Lung Disease. Am J Respir Crit Care Med, 2021, 203(2): 245-249.
|
| 6. |
Drake TM, Docherty AB, Harrison EM, et al. Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease. An International Multicenter Study. Am J Respir Crit Care Med, 2020, 202(12): 1656-1665.
|
| 7. |
Stewart I, Jacob J, George PM, et al. Residual Lung Abnormalities after COVID-19 Hospitalization: Interim Analysis of the UKILD Post-COVID-19 Study. Am J Respir Crit Care Med, 2023, 207(6): 693-703.
|
| 8. |
Ambardar SR, Hightower SL, Huprikar NA, et al. Post-COVID-19 Pulmonary Fibrosis: Novel Sequelae of the Current Pandemic. J Clin Med, 2021, 10(11): 2452.
|
| 9. |
Lago VC, Prudente RA, Luzia DA, et al. Persistent interstitial lung abnormalities in post-COVID-19 patients: a case series. J Venom Anim Toxins Incl Trop Dis, 2021, 27: e20200157.
|
| 10. |
Robertshaw M, Kershaw CD. Post COVID Interstitial Lung Abnormalities-Incidence and Management. Curr Pulmonol Rep, 2023, 12(2): 64-69.
|
| 11. |
Kousathanas A, Pairo-Castineira E, Rawlik K, et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature, 2022, 607(7917): 93-97.
|
| 12. |
Wang L, Balmat TJ, Antonia AL, et al. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. Genome Med, 2021, 13(1): 83.
|
| 13. |
Horowitz JE, Kosmicki JA, Damask A, et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet, 2022, 54(4): 382-392.
|
| 14. |
Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in COVID-19. Nature, 2021, 591(7848): 92-98.
|
| 15. |
Allen RJ, Guillen-Guio B, Oldham JM, et al. Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med, 2020, 201(5): 564-574.
|
| 16. |
Allen RJ, Guillen-Guio B, Croot E, et al. Genetic overlap between idiopathic pulmonary fibrosis and COVID-19. Eur Respir J, 2022, 60(1): 2103132.
|
| 17. |
Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med, 2008, 27(8): 1133-1163.
|
| 18. |
Weng H, Li H, Zhang Z, et al. Association between uric acid and risk of venous thromboembolism in East Asian populations: a cohort and Mendelian randomization study. Lancet Reg Health West Pac, 2023, 39: 100848.
|
| 19. |
Zhang Z, Li H, Weng H, et al. Genome-wide association analyses identified novel susceptibility loci for pulmonary embolism among Han Chinese population. BMC Med, 2023, 21(1): 153.
|
| 20. |
Zhu J, Zhou D, Yu M, et al. Appraising the causal role of smoking in idiopathic pulmonary fibrosis: a Mendelian randomization study. Thorax, 2024, 79(2): 179-181.
|
| 21. |
Reynolds CJ, Del Greco MF, Allen RJ, et al. The causal relationship between gastro-oesophageal reflux disease and idiopathic pulmonary fibrosis: a bidirectional two-sample Mendelian randomisation study. Eur Respir J, 2023, 61(5): 2201585.
|
| 22. |
Allen RJ, Stockwell A, Oldham JM, et al. Genome-wide association study across five cohorts identifies five novel loci associated with idiopathic pulmonary fibrosis. Thorax, 2022, 77(8): 829-833.
|
| 23. |
COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature, 2021, 600: 472-477.
|
| 24. |
Bulik-Sullivan BK, Loh P, Finucane HK, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet, 2015, 47(3): 291-295.
|
| 25. |
Yang J, Weedon MN, Purcell S, et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet, 2011, 19(7): 807-812.
|
| 26. |
Huang X, Yao M, Tian P, et al. Genome-wide cross-trait analysis and Mendelian randomization reveal a shared genetic etiology and causality between COVID-19 and venous thromboembolism. Commun Biol, 2023, 6(1): 441.
|
| 27. |
Bone WP, Siewert KM, Jha A, et al. Multi-trait association studies discover pleiotropic loci between Alzheimer's disease and cardiometabolic traits. Alzheimers Res Ther, 2021, 13(1): 34.
|
| 28. |
Tian Y, Ma G, Li H, et al. Shared Genetics and Comorbid Genes of Amyotrophic Lateral Sclerosis and Parkinson's Disease. Mov Disord, 2023, 38(10): 1813-1821.
|
| 29. |
Burgess S, Butterworth A, Thompson SG. Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. Genet Epidemiol, 2013, 37(7): 658-665.
|
| 30. |
Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet, 2014, 10(5): e1004383.
|
| 31. |
Han D, Gong H, Wei Y, et al. Hesperidin inhibits lung fibroblast senescence via IL-6/STAT3 signaling pathway to suppress pulmonary fibrosis. Phytomedicine, 2023, 112: 154680.
|
| 32. |
Gusev E, Sarapultsev A, Solomatina L, et al. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int J Mol Sci, 2022, 23(3): 1716.
|
| 33. |
Phan THG, Paliogiannis P, Nasrallah GK, et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci, 2021, 78(5): 2031-2057.
|
| 34. |
Si S, Li J, Tewara MA, et al. Genetically Determined Chronic Low-Grade Inflammation and Hundreds of Health Outcomes in the UK Biobank and the FinnGen Population: A Phenome-Wide Mendelian Randomization Study. Front Immunol, 2021, 12: 720876.
|
| 35. |
Kishore A, Žižková V, Kocourková L, et al. Association Study for 26 Candidate Loci in Idiopathic Pulmonary Fibrosis Patients from Four European Populations. Front Immunol, 2016, 7: 274.
|
| 36. |
Zhang B, Groffen J, Heisterkamp N. Resistance to farnesyltransferase inhibitors in Bcr/Abl-positive lymphoblastic leukemia by increased expression of a novel ABC transporter homolog ATP11a. Blood, 2005, 106(4): 1355-1361.
|
| 37. |
Shulenin S, Nogee L M, Annilo T, et al. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med, 2004, 350(13): 1296-1303.
|
| 38. |
Bullard JE, Wert SE, Whitsett JA, et al. ABCA3 Mutations Associated with Pediatric Interstitial Lung Disease. Am J Respir Crit Care Med, 2005, 172(8): 1026-1031.
|
| 39. |
Young L R, Nogee L M, Barnett B, et al. Usual Interstitial Pneumonia in an Adolescent With ABCA3 Mutations. Chest, 2008, 134(1): 192-195.
|
| 40. |
Sahanic S, Hilbe R, Dünser C, et al. SARS-CoV-2 activates the TLR4/MyD88 pathway in human macrophages: A possible correlation with strong pro-inflammatory responses in severe COVID-19. Heliyon, 2023, 9(11): e21893.
|
| 41. |
Zhao Y, Kuang M, Li J, et al. SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Res, 2021, 31(7): 818-820.
|
| 42. |
Dalapati T, Wang L, Jones AG, et al. Context-specific eQTLs provide deeper insight into causal genes underlying shared genetic architecture of COVID-19 and idiopathic pulmonary fibrosis. HGG Adv, 2025, 6(2): 100410.
|
| 43. |
van der Mark VA, Ghiboub M, Marsman C, et al. Phospholipid flippases attenuate LPS-induced TLR4 signaling by mediating endocytic retrieval of Toll-like receptor 4. Cell Mol Life Sci, 2017, 74(4): 715-730.
|
| 44. |
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440): 251-254.
|
| 45. |
Hollingsworth LR, Sharif H, Griswold AR, et al. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation. Nature, 2021, 592(7856): 778-783.
|
| 46. |
Okondo MC, Rao SD, Taabazuing CY, et al. Inhibition of Dpp8/9 Activates the Nlrp1b Inflammasome. Cell Chem Biol, 2018, 25(3): 262-267.
|
| 47. |
Zhong FL, Robinson K, Teo D, et al. Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. J Biol Chem, 2018, 293(49): 18864-18878.
|
| 48. |
Acharya PS, Zukas A, Chandan V, et al. Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol, 2006, 37(3): 352-360.
|
| 49. |
Zhang Y, Noth I, Garcia JG, et al. A Variant in the Promoter ofMUC5B and Idiopathic Pulmonary Fibrosis. N Engl J Med, 2011, 364(16): 1576-1577.
|