| 1. | Rothwell PM. Treating individuals 2. Subgroup analysis in randomised controlled trials:importance, indications, and interpretation. Lancet, 2005, 365(9454): 176-186. | 
				                                                        
				                                                            
				                                                                | 2. | Sun X, Ioannidis JP, Agoritsas T, et al. How to use a subgroup analysis: users' guide to the medical literature. JAMA, 2014, 311(4): 405-411. | 
				                                                        
				                                                            
				                                                                | 3. | Kent DM, Steyerberg E, van Klaveren D. Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects. BMJ, 2018, 363: k4245. | 
				                                                        
				                                                            
				                                                                | 4. | Gong X, Hu M, Basu M, et al. Heterogeneous treatment effect analysis based on machine-learning methodology. CPT Pharmacometrics Syst Pharmacol, 2021, 10(11): 1433-1443. | 
				                                                        
				                                                            
				                                                                | 5. | Brookes ST, Whitely E, Egger M, et al. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. J Clin Epidemiol, 2004, 57(3): 229-236. | 
				                                                        
				                                                            
				                                                                | 6. | Athey S, Imbens G. Recursive partitioning for heterogeneous causal effects. Proc Natl Acad Sci U S A, 2016, 113(27): 7353-7360. | 
				                                                        
				                                                            
				                                                                | 7. | Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. J Am Stat Assoc, 2018, 113(523): 1228-1242. | 
				                                                        
				                                                            
				                                                                | 8. | 何文静, 尤东方, 张汝阳, 等. 利用因果森林估计异质性人群下个体的处理效应. 中华流行病学杂志, 2019, 40(6): 707-712. | 
				                                                        
				                                                            
				                                                                | 9. | Podgorelec V, Kokol P, Stiglic B, et al. Decision trees: an overview and their use in medicine. J Med Syst, 2002, 26(5): 445-463. | 
				                                                        
				                                                            
				                                                                | 10. | Breiman L. Random forests. Machine Learning. 2001: 45, 5-32. | 
				                                                        
				                                                            
				                                                                | 11. | Athey S, Wager S. Estimating treatment effects with causal forests: an application. Observational Studies, 2019, 5(2): 37-51. | 
				                                                        
				                                                            
				                                                                | 12. | Look AHEAD Regearch Group, Wing RR, Bolin P, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med, 2013, 369(2): 145-154. | 
				                                                        
				                                                            
				                                                                | 13. | Baum A, Scarpa J, Bruzelius E, et al. Targeting weight loss interventions to reduce cardiovascular complications of type 2 diabetes: a machine learning-based post-hoc analysis of heterogeneous treatment effects in the Look AHEAD trial. Lancet Diabetes Endocrinol, 2017, 5(10): 808-815. | 
				                                                        
				                                                            
				                                                                | 14. | SPRINT Research Group, Wright JT, Williamson JD, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med, 2015, 373(22): 2103-2116. | 
				                                                        
				                                                            
				                                                                | 15. | Scarpa J, Bruzelius E, Doupe P, et al. Assessment of risk of harm associated with intensive blood pressure management among patients with hypertension who smoke: a secondary analysis of the systolic blood pressure intervention trial. JAMA Netw Open, 2019, 2(3): e190005. | 
				                                                        
				                                                            
				                                                                | 16. | Inoue K, Seeman TE, Horwich T, et al. Heterogeneity in the association between the presence of coronary artery calcium and cardiovascular events: a machine-learning approach in the MESA study. Circulation, 2023, 147(2): 132-141. | 
				                                                        
				                                                            
				                                                                | 17. | Goldstein BA, Rigdon J. Using machine learning to identify heterogeneous effects in randomized clinical trials-moving beyond the forest plot and into the forest. JAMA Netw Open, 2019, 2(3): e190004. | 
				                                                        
				                                                            
				                                                                | 18. | Künzel SR, Sekhon JS, Bickel PJ, et al. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc Natl Acad Sci U S A, 2019, 116(10): 4156-4165. | 
				                                                        
				                                                            
				                                                                | 19. | Blakely T, Lynch J, Simons K, et al. Reflection on modern methods: when worlds collide-prediction, machine learning and causal inference. Int J Epidemiol, 2021, 49(6): 2058-2064. |