| 1. | Flores M, Glusman G, Brogaard K,  et al. P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med, 2013, 10(6): 565-576. | 
				                                                        
				                                                            
				                                                                | 2. | Moons KG, Royston P, Vergouwe Y,  et al. Prognosis and prognostic research: what, why, and how. BMJ, 2009, 338: b375. | 
				                                                        
				                                                            
				                                                                | 3. | Collins GS, Reitsma JB, Altman DG,  et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594. | 
				                                                        
				                                                            
				                                                                | 4. | Steyerberg EW, Moons KG, van der Windt DA,  et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med, 2013, 10(2): e1001381. | 
				                                                        
				                                                            
				                                                                | 5. | Grove WM, Zald DH, Lebow BS,  et al. Clinical  versus mechanical prediction: a meta-analysis. Psychol Assess, 2000, 12(1): 19-30. | 
				                                                        
				                                                            
				                                                                | 6. | Royston P, Moons KG, Altman DG,  et al. Prognosis and prognostic research: developing a prognostic model. BMJ, 2009, 338: b604. | 
				                                                        
				                                                            
				                                                                | 7. | Altman DG, Vergouwe Y, Royston P,  et al. Prognosis and prognostic research: validating a prognostic model. BMJ, 2009, 338: b605. | 
				                                                        
				                                                            
				                                                                | 8. | Dekkers OM, Mulder JM. When will individuals meet their personalized probabilities. A philosophical note on risk prediction. Eur J Epidemiol, 2020, 35(12): 1115-1121. | 
				                                                        
				                                                            
				                                                                | 9. | Piccininni M, Konigorski S, Rohmann JL,  et al. Directed acyclic graphs and causal thinking in clinical risk prediction modeling. BMC Med Res Methodol, 2020, 20(1): 179. | 
				                                                        
				                                                            
				                                                                | 10. | Sperrin M, Jenkins D, Martin GP,  et al. Explicit causal reasoning is needed to prevent prognostic models being victims of their own success. J Am Med Inform Assoc, 2019, 26(12): 1675-1676. | 
				                                                        
				                                                            
				                                                                | 11. | Pladet L, Luijken K, Fresiello L,  et al. Clinical decision support for extracorporeal membrane oxygenation: will we fly by wire. Perfusion, 2023, 38(1_suppl): 68-81. | 
				                                                        
				                                                            
				                                                                | 12. | Clift AK, Dodwell D, Lord S,  et al. Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study. BMJ, 2023, 381: e073800. | 
				                                                        
				                                                            
				                                                                | 13. | Pajouheshnia R, Damen JAAG, Groenwold RHH,  et al. Treatment use in prognostic model research: a systematic review of cardiovascular prognostic studies. Diagn Progn Res, 2017, 1: 15. | 
				                                                        
				                                                            
				                                                                | 14. | Liew SM, Doust J, Glasziou P. Cardiovascular risk scores do not account for the effect of treatment: a review. Heart, 2011, 97(9): 689-697. | 
				                                                        
				                                                            
				                                                                | 15. | Liew SM, Doust J, Glasziou P. Systematic review did not consider problem of treatment effects. BMJ, 2012, 345: e4355. | 
				                                                        
				                                                            
				                                                                | 16. | Pajouheshnia R, Schuster NA, Groenwold RHH,  et al. Accounting for time‐dependent treatment use when developing a prognostic model from observational data: a review of methods. Stat Neerland, 2019, 74: 38-51. | 
				                                                        
				                                                            
				                                                                | 17. | Cheong-See F, Allotey J, Marlin N,  et al. Prediction models in obstetrics: understanding the treatment paradox and potential solutions to the threat it poses. BJOG, 2016, 123(7): 1060-1064. | 
				                                                        
				                                                            
				                                                                | 18. | Groenwold RH, Moons KG, Pajouheshnia R,  et al. Explicit inclusion of treatment in prognostic modeling was recommended in observational and randomized settings. J Clin Epidemiol, 2016, 78: 90-100. | 
				                                                        
				                                                            
				                                                                | 19. | Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology, 2000, 11(5): 550-560. | 
				                                                        
				                                                            
				                                                                | 20. | Sperrin M, Martin GP, Pate A,  et al. Using marginal structural models to adjust for treatment drop-in when developing clinical prediction models. Stat Med, 2018, 37(28): 4142-4154. | 
				                                                        
				                                                            
				                                                                | 21. | van Geloven N, Swanson SA, Ramspek CL,  et al. Prediction meets causal inference: the role of treatment in clinical prediction models. Eur J Epidemiol, 2020, 35(7): 619-630. | 
				                                                        
				                                                            
				                                                                | 22. | Alba AC, Agoritsas T, Walsh M,  et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature. JAMA, 2017, 318(14): 1377-1384. | 
				                                                        
				                                                            
				                                                                | 23. | Huang Y, Li W, Macheret F,  et al. A tutorial on calibration measurements and calibration models for clinical prediction models. J Am Med Inform Assoc, 2020, 27(4): 621-633. | 
				                                                        
				                                                            
				                                                                | 24. | Grant SW, Collins GS, Nashef SAM. Statistical primer: developing and validating a risk prediction model. Eur J Cardiothorac Surg, 2018, 54(2): 203-208. | 
				                                                        
				                                                            
				                                                                | 25. | Lin L, Sperrin M, Jenkins DA,  et al. A scoping review of causal methods enabling predictions under hypothetical interventions. Diagn Progn Res, 2021, 5(1): 3. | 
				                                                        
				                                                            
				                                                                | 26. | Fehr J, Piccininni M, Kurth T,  et al. Assessing the transportability of clinical prediction models for cognitive impairment using causal models. BMC Med Res Methodol, 2023, 23(1): 187. | 
				                                                        
				                                                            
				                                                                | 27. | Dickerman BA, Dahabreh IJ, Cantos KV,  et al. Predicting counterfactual risks under hypothetical treatment strategies: an application to HIV. Eur J Epidemiol, 2022, 37(4): 367-376. | 
				                                                        
				                                                            
				                                                                | 28. | Mitra N, Roy J, Small D. The future of causal inference. Am J Epidemiol, 2022, 191(10): 1671-1676. | 
				                                                        
				                                                            
				                                                                | 29. | Prosperi M, Guo Y, Sperrin M,  et al. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat Mach Intell, 2020, 2(7): 369-375. |