Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
| 1. | Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA, 2016, 315(8): 788. |
| 2. | ARDS Definition Task Force; Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23): 2526-2533. |
| 3. | Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primer, 2019, 5(1): 18. |
| 4. | Montgomery AB. Early description of ARDS. Chest, 1991, 99(1): 261-262. |
| 5. | Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet, 1967, 290(7511): 319-323. |
| 6. | Riviello ED, Kiviri W, Twagirumugabe T, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali Modification of the Berlin Definition. Am J Respir Crit Care Med, 2016, 193(1): 52-59. |
| 7. | Matthay MA, Arabi Y, Arroliga AC, et al. A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med, 2024, 209(1): 37-47. |
| 8. | 袁雪燕, 刘玲, 邱海波. 2023急性呼吸窘迫综合征全球新标准: 进步与局限. 中华医学杂志, 2024, 104(15): 1216-1220. |
| 9. | Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet, 2022, 400(10358): 1145-1156. |
| 10. | Blondonnet R, Constantin JM, Sapin V, et al. A pathophysiologic approach to biomarkers in acute respiratory distrefss syndrome. Dis Markers, 2016, 2016: 1-20. |
| 11. | Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med, 1982, 3(1): 35-56. |
| 12. | Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med, 2001, 163(6): 1376-1383. |
| 13. | Bellani G, Pham T, Laffey JG. Missed or delayed diagnosis of ARDS: a common and serious problem. Intensive Care Med, 2020, 46(6): 1180-1183. |
| 14. | García-Laorden MI, Lorente JA, Flores C, et al. Biomarkers for the acute respiratory distress syndrome: how to make the diagnosis more precise. Ann Transl Med, 2017, 5(14): 283-283. |
| 15. | Van DerZeeP, Rietdijk W, Somhorst P, et al. A systematic review of biomarkers multivariately associated with acute respiratory distress syndrome development and mortality. Crit Care, 2020, 24(1): 243. |
| 16. | Bime C, Camp SM, Casanova N, et al. The acute respiratory distress syndrome biomarker pipeline: crippling gaps between discovery and clinical utility. Transl Res, 2020, 226: 105-115. |
| 17. | Schmidt AM, Yan SD, Yan SF, et al. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta, 2000, 1498(2-3): 99-111. |
| 18. | 王燕燕, 刘志慧. 可溶性晚期糖基化终末产物受体在肺部疾病中作用的研究进展. 江苏医药, 2023, 49(7): 743-747. |
| 19. | Jabaudon M, Blondonnet R, Roszyk L. Soluble receptor for advanced glycation end-products predicts impaired alveolar fluid clearance in acute respiratory distress syndrome. Am J Respir Crit Care Med, 2015, 192(2): 191-199. |
| 20. | Sternberg DI, Gowda R, Mehra D, et al. Blockade of receptor for advanced glycation end product attenuates pulmonary reperfusion injury in mice. J Thorac Cardiovasc Surg, 2008, 136(6): 1576-1585. |
| 21. | Jabaudon M, Blondonnet R, Pereira B, et al. Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data. Intensive Care Med, 2018, 44(9): 1388-1399. |
| 22. | Singh H, Agrawal DK. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev Res, 2022, 83(6): 1257-1269. |
| 23. | 曾宪飞, 卢东雪, 张西京, 等. 5种血清学标志物对急性呼吸窘迫综合征的诊断和预后预测价值. 西安交通大学学报(医学版), 2019, 40(4): 588-592. |
| 24. | Ware LB, Koyama T, Zhao Z, et al. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Crit Care, 2013, 17(5): R253. |
| 25. | Park J, Pabon M, Choi AMK, et al. Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: validation in US and Korean cohorts. BMC Pulm Med, 2017, 17(1): 204. |
| 26. | Jayadi J, Airlangga P, Kusuma E, et al. Correlation between serum surfactant protein-D level with respiratory compliance and acute respiratory distress syndrome in critically ill COVID-19 patients: a retrospective observational study. Int J Crit Illn Inj Sci, 2022, 12(4): 204-210. |
| 27. | Peukert K, Seeliger B, Fox M, et al. SP-D serum levels reveal distinct epithelial damage in direct human ARDS. J Clin Med, 2021, 10(4): 737. |
| 28. | Delgado C, Krötzsch E, Jiménez-Alvarez LA, et al. Serum surfactant protein D (SP-D) is a prognostic marker of poor outcome in patients with A/H1N1 virus infection. Lung, 2015, 193(1): 25-30. |
| 29. | García-Mouton C, Hidalgo A, Arroyo R, Echaide M, et al. Pulmonary surfactant and drug delivery: an interface-assisted carrier to deliver surfactant protein SP-D into the airways. Front Bioeng Biotechnol, 2021, 8: 613276. |
| 30. | Ghati A, Dam P, Tasdemir D, et al. Exogenous pulmonary surfactant: a review focused on adjunctive therapy for severe acute respiratory syndrome coronavirus 2 including SP-A and SP-D as added clinical marker. Curr Opin Colloid Interface Sci, 2021, 51: 101413. |
| 31. | Almuntashiri S, Zhu Y, Han Y, et al. Club cell secreted protein CC16: Potential applications in prognosis and therapy for pulmonary diseases. J Clin Med, 2020, 9(12): 4039. |
| 32. | Lin J, Tao W, Wei J, et al. Correction to: Renal dysfunction reduces the diagnostic and prognostic value of serum CC16 for acute respiratory distress syndrome in intensive care patients. BMC Pulm Med, 2021, 21(1): 54. |
| 33. | Wutzler S, Lehnert T, Laurer H, et al. Circulating levels of Clara cell protein 16 but not surfactant protein D identify and quantify lung damage in patients with multiple injuries. J Trauma Inj Infect Crit Care, 2011, 71(2): E31-E36. |
| 34. | Chase A, Almuntashiri S, Sikora A, et al. Club cell secretory protein-derived acute respiratory distress syndrome phenotypes predict 90-day mortality: a reanalysis of the fluids and catheter treatment Trial. Crit Care Explor, 2022, 4(6): e0711. |
| 35. | Han Y, Zhu Y, Almuntashiri S, et al. Extracellular vesicle-encapsulated CC16 as novel nanotherapeutics for treatment of acute lung injury. Mol Ther, 2023, 31(5): 1346-1364. |
| 36. | Kohno N, Inoue Y, Hamada H, et al. Difference in sero-diagnostic values among KL-6-associated mucins classified as cluster 9. Int J Cancer, 1994, 57(S8): 81-83. |
| 37. | Ye C, Xu B, Yang J, et al. Mucin1 relieves acute lung injury by inhibiting inflammation and oxidative stress. Eur J Histochem, 2021, 65(4): 3331. |
| 38. | Han L, Wang S, Ma J, et al. Expression and significance of serum KL-6 in patients with acute respiratory distress syndrome. J Thorac Dis, 2023, 15(12): 6988-6995. |
| 39. | Franco-Montoya ML, Bourbon JR, Durrmeyer X, et al. Pulmonary effects of keratinocyte growth factor in newborn rats exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol, 2009, 297(5): L965-L976. |
| 40. | McAuley DF, Cross LM, Hamid U, et al. Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Respir Med, 2017, 5(6): 484-491. |
| 41. | Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 1997, 277(5322): 55-60. |
| 42. | Bhandari V, Choo-Wing R, Lee CG, et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med, 2006, 12(11): 1286-1293. |
| 43. | Parikh SM. Targeting Tie2 and the host vascular response in sepsis. Sci Transl Med, 2016, 8(335): 335fs9. |
| 44. | Lomas-Neira JL, Heffernan DS, Ayala A, et al. Blockade of endothelial growth factor, angiopoietin-2, reduces indices of ards and mortality in mice resulting from the dual-insults of hemorrhagic shock and sepsis. Shock, 2016, 45(2): 157-165. |
| 45. | Reilly JP, Wang F, Jones TK, et al. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ards development: evidence from mendelian randomization and mediation analysis. Intensive Care Med, 2018, 44(11): 1849-1858. |
| 46. | Rosenberger CM, Wick KD, Zhuo H, et al. Early plasma angiopoietin-2 is prognostic for ARDS and mortality among critically ill patients with sepsis. Crit Care, 2023, 27(1): 234. |
| 47. | Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell, 2019, 176(6): 1248-1264. |
| 48. | Medford ARL. Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): paradox or paradigm?. Thorax, 2006, 61(7): 621-626. |
| 49. | Koh H, Tasaka S, Hasegawa N, et al. Vascular endothelial growth factor in epithelial lining fluid of patients with acute respiratory distress syndrome. Respirology, 2008, 13(2): 281-284. |
| 50. | Zhang Z, Lu D shi, Zhang D qing, et al. Targeted antagonism of vascular endothelial growth factor reduces mortality of mice with acute respiratory distress syndrome. Curr Med Sci, 2020, 40(4): 671-676. |
| 51. | Kawecki C, Lenting PJ, Denis CV. von Willebrand factor and inflammation. J Thromb Haemost, 2017, 15(7): 1285-1294. |
| 52. | Bryckaert M, Rosa JP, Denis CV, et al. Of von Willebrand factor and platelets. Cell Mol Life Sci, 2015, 72(2): 307-326. |
| 53. | 冯雨慧, 邹兰兰, 李凡, 崔晨航, 乔俊英. 血清血管性血友病因子在急性肺损伤/急性呼吸窘迫综合征患者中表达的meta分析. 临床荟萃, 2024, 39(10): 877-881. |
| 54. | Ma S, Zhao ML, Wang K, et al. Association of Ang-2, vWF, and EVLWI with risk of mortality in sepsis patients with concomitant ARDS: a retrospective study. J Formos Med Assoc, 2020, 119(5): 950-956. |
| 55. | Schmal H, Czermak BJ, Lentsch AB, et al. Soluble ICAM-1 activates lung macrophages and enhances lung injury1. J Immunol, 1998, 161(7): 3685-3693. |
| 56. | Wen L, Moser M, Ley K. Molecular mechanisms of leukocyte β2 integrin activation. Blood, 2022, 139(24): 3480-3492. |
| 57. | Celik E, Faridi MohdH, Kumar V, et al. Agonist leukadherin-1 increases CD11b/CD18-dependent adhesion via membrane tethers. Biophys J, 2013, 105(11): 2517-2527. |
| 58. | Pang X, He X, Qiu Z, et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther, 2023, 8: 1. |
| 59. | Liang NW, Wilson C, Davis B, et al. Modeling lung endothelial dysfunction in sepsis-associated ARDS using a microphysiological system. Physiol Rep, 2024, 12(13): e16134. |
| 60. | Williams JG, Jones RL, Yunger TL, et al. Comparison of 16 pediatric acute respiratory distress syndrome-associated plasma biomarkers with changing lung injury severity. Pediatr Crit Care Med, 2024, 25(1): e31-e40. |
| 61. | Davey A, McAuley DF, O’Kane CM. Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. Eur Respir J, 2011, 38(4): 959-970. |
| 62. | Gueders MM, Foidart JM, Noel A, et al. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol, 2006, 533(1-3): 133-144. |
| 63. | Hartog CM, Wermelt JA, Sommerfeld CO, et al. Pulmonary matrix metalloproteinase excess in hospital-acquired pneumonia. Am J Respir Crit Care Med, 2003, 167(4): 593-598. |
| 64. | O’Kane CM, McKeown SW, Perkins GD, et al. Salbutamol up-regulates matrix metalloproteinase-9 in the alveolar space in the acute respiratory distress syndrome. Crit Care Med, 2009, 37(7): 2242-2249. |
| 65. | Jones TW, Almuntashiri S, Chase A, et al. Plasma matrix metalloproteinase-3 predicts mortality in acute respiratory distress syndrome: a biomarker analysis of a randomized controlled trial. Respir Res, 2023, 24(1): 166. |
| 66. | Aschner Y, Zemans RL, Yamashita CM, et al. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS. Chest, 2014, 146(4): 1081-1091. |
| 67. | Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev, 2007, 87(4): 1285-1342. |
| 68. | Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011, 41(2): 271-90. |
| 69. | Hästbacka J, Linko R, Tervahartiala T, et al. Serum MMP-8 and TIMP-1 in critically ill patients with acute respiratory failure: TIMP-1 is associated with increased 90-day mortality. Anesth Analg, 2014, 118(4): 790-798. |
| 70. | Almuntashiri S, Jones TW, Wang X, et al. Plasma TIMP-1 as a sex-specific biomarker for acute lung injury. Biol Sex Differ, 2022, 13(1): 70. |
| 71. | Chernikov IV, Staroseletz YYu, Tatarnikova IS, et al. siRNA-mediated timp1 silencing inhibited the inflammatory phenotype during acute lung injury. Int J Mol Sci, 2023, 24(2): 1641. |
| 72. | González-López A, García-Prieto E, Batalla-Solís E, et al. Lung strain and biological response in mechanically ventilated patients. Intensive Care Med, 2012, 38(2): 240-247. |
| 73. | Chesnutt AN, Matthay MA, Tibayan FA, et al. Early detection of type III procollagen peptide in acute lung injury. Pathogenetic and prognostic significance. Am J Respir Crit Care Med, 1997, 156(3): 840-845. |
| 74. | Steinberg KP, Hudson LD, Goodman RB, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med, 2006, 354(16): 1671-1684. |
| 75. | Ricard JD, Dreyfuss D, Saumon G. Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med, 2001, 163(5): 1176-1180. |
| 76. | Bhandary YP, Shetty SK, Marudamuthu AS, et al. Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system. Am J Physiol-Lung Cell Mol Physiol, 2012, 302(5): L463-L473. |
| 77. | Zuber SP. Cytokines and their physiologic and pharmacologic functions in inflammation: a review. Intern J Pharm Life Sci, 2011, 2(10): 1247-1263. |
| 78. | Selman M. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc, 2006, 3(4): 364-372. |
| 79. | Wang J, Yang X, Li Y, et al. Specific cytokines in the inflammatory cytokine storm of patients with COVID-19-associated acute respiratory distress syndrome and extrapulmonary multiple-organ dysfunction. Virol J, 2021, 18(1): 117. |
| 80. | Yu SY, Koh DH, Choi M, et al. Clinical efficacy and safety of interleukin-6 receptor antagonists (tocilizumab and sarilumab) in patients with COVID-19: a systematic review and meta-analysis. Emerg Microbes Infect, 2022, 11(1): 1154-1165. |
| 81. | 桑智慧, 邢佳丽, 陈建荣. 急性呼吸窘迫综合征患者呼出气冷凝液和血清中IL-8检测的临床意义. 临床急诊杂志, 2017, 18(10): 735-739. |
| 82. | Cesta MC, Zippoli M, Marsiglia C, et al. The role of interleukin-8 in lung inflammation and injury: Implications for the management of COVID-19 and hyperinflammatory acute respiratory distress syndrome. Front Pharmacol, 2022, 12: 808797. |
| 83. | Li Q, Gu Y, Tu Q, et al. Blockade of interleukin-17 restrains the development of acute lung injury. Scand J Immunol, 2016, 83(3): 203-211. |
| 84. | Ritchie ND, Ritchie R, Bayes HK, et al. IL-17 can be protective or deleterious in murine pneumococcal pneumonia. PLOS Pathog, 2018, 14(5): e1007099. |
| 85. | Li C, Yang P, Sun Y, et al. IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus. Cell Res, 2012, 22(3): 528-538. |
| 86. | Bryushkova EA, Skatova VD, Mutovina ZY, et al. Tocilizumab, netakimab, and baricitinib in patients with mild-to-moderate COVID-19: an observational study. PLoS One, 2022, 17(8): e0273340. |
| 87. | Maslennikov R, Ivashkin V, Vasilieva E, et al. Interleukin 17 antagonist netakimab is effective and safe in the new coronavirus infection (COVID-19). Eur Cytokine Netw, 2021, 32(1): 8-14. |
| 88. | Paine R, Standiford TJ, Dechert RE, et al. A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med, 2012, 40(1): 90-97. |
| 89. | Matute-Bello G, Liles CW, Radella FI, et al. Modulation of neutrophil apoptosis by granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor during the course of acute respiratory distress syndrome. Crit Care Med, 2000, 28(1): 1. |
| 90. | Herold S, Hoegner K, Vadász I, et al. Inhaled granulocyte/macrophage colony-stimulating factor as treatment of pneumonia-associated acute respiratory distress syndrome. Am J Respir Crit Care Med, 2014, 189(5): 609-611. |
| 91. | Lang FM, Lee KMC, Teijaro JR, et al. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol, 2020, 20(8): 507-514. |
| 92. | Mehta P, Porter JC, Manson JJ, et al. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities. Lancet Respir Med, 2020, 8(8): 822-830. |
| 93. | Bauer TT, Montón C, Torres A, et al. Comparison of systemic cytokine levels in patients with acute respiratory distress syndrome, severe pneumonia, and controls. Thorax, 2000, 55(1): 46-52. |
| 94. | Mortaz E, Tabarsi P, Jamaati H, et al. Increased serum levels of soluble tnf-α receptor is associated with ICU mortality in COVID-19 patients. Front Immunol, 2021, 12: 592727. |
| 95. | Pooladanda V, Thatikonda S, Bale S, et al. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death Dis, 2019, 10(2): 81. |
| 96. | Watanabe R, Wada H, Watanabe Y, et al. Activity and antigen levels of thrombin-activatable fibrinolysis inhibitor in plasma of patients with disseminated intravascular coagulation. Thromb Res, 2001, 104(1): 1-6. |
| 97. | Ware LB, Koyama T, Billheimer DD, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest, 2010, 137(2): 288-296. |
| 98. | Prabhakaran P, Ware LB, White KE, et al. Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol, 2003, 285(1): L20-L28. |
| 99. | J Jalkanen V, Yang R, Linko R, et al. SuPAR and PAI-1 in critically ill, mechanically ventilated patients. Intensive Care Med, 2013, 39(3): 489-496. |
| 100. | Cornet AD, Groeneveld ABJ, Hofstra JJ, et al. Recombinant human activated protein C in the treatment of acute respiratory distress syndrome: a randomized clinical trial. PLoS One, 2014, 9(3): e90983. |
| 101. | 孙会志, 孙海英, 李亚平. 脓毒症并发ARDS患者血清sTM、suPAR、Ang-2水平与炎症因子及预后的关系. 检验医学与临床, 2022(8): 1075-1079. |
| 102. | Liu Z, Li Y, Zhao Q, Kang Y. Association and predictive value of soluble thrombomodulin with mortality in patients with acute respiratory distress syndrome: systematic review and meta-analysis. Ann Transl Med, 2023, 11(4): 181-181. |
| 103. | Ward PA, Grailer JJ. Acute lung injury and the role of histones. Transl Respir Med, 2014, 2(1): 1. |
| 104. | 金杨, 江雪梅, 孙梦, 等. 细胞外组蛋白对ARDS早期诊断和预后评估的临床价值. 同济大学学报 (医学版), 2019, 40(1): 5. |
| 105. | Kutcher ME, Xu J, Vilardi RF, et al. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg, 2012, 73(6): 1389-1394. |
| 106. | Christiaans SC, Wagener BM, Esmon CT, et al. Protein C and acute inflammation: a clinical and biological perspective. Am J Physiol-Lung Cell Mol Physiol, 2013, 305(7): L455-L466. |
| 107. | Oddo M, Schaller MD, Feihl F, et al. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med, 2006, 34(7): 1865-1873. |
| 108. | Matthay MA, Ware LB. Plasma protein C levels in patients with acute lung injury: Prognostic significance. Crit Care Med, 2004, 32(Supplement): S229-S232. |
| 109. | Kaziani K, Vassiliou AG, Kotanidou A, et al. Activated protein C has no effect on pulmonary capillary endothelial function in septic patients with acute respiratory distress syndrome: Association of endothelial dysfunction with mortality. Infect Dis Ther, 2018, 7(S1): 15-25. |
| 110. | Li G, Yan K, Zhang W, et al. ARDS and aging: TYMS emerges as a promising biomarker and therapeutic target. Front Immunol, 2024, 15: 1365206. |
| 111. | Du M, Garcia JGN, Christie JD, et al. Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensive Care Med, 2021, 47(7): 761-771. |
| 112. | Lin M, Xu F, Sun J, et al. Integrative multi-omics analysis unravels the host response landscape and reveals a serum protein panel for early prognosis prediction for ARDS. Crit Care, 2024, 28(1): 213. |
| 113. | Brown RM, Semler MW, Zhao Z, et al. Plasma angiopoietin-2 (Ang2) and receptor for advanced glycation end products (RAGE) improve diagnosis of ards compared to provider clinical assessment in adult trauma patients. In: A42. ARDS: RISK, TREATMENT, AND OUTCOMES. May 1, 2015, A1617-A1617. Doi:. |
| 114. | Bime C, Casanova N, Oita RC, et al. Development of a biomarker mortality risk model in acute respiratory distress syndrome. Crit Care, 2019, 23(1): 410. |
| 115. | Zhao Z, Wickersham N, Kangelaris KN, et al. External validation of a biomarker and clinical prediction model for hospital mortality in ARDS. Intensive Care Med, 2017, 43(8): 1123-1131. |
| 116. | Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med, 2014, 2(8): 611-620. |
| 117. | Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med, 2018, 6(9): 691-698. |
| 118. | Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med, 2017, 195(3): 331-338. |
| 119. | Slim MA, van Amstel RBE, Bos LDJ, et al. Inflammatory subphenotypes previously identified in ARDS are associated with mortality at intensive care unit discharge: a secondary analysis of a prospective observational study. Crit Care, 2024, 28(1): 151. |
| 120. | Yu F. Metabolomics-based exploration of metabolic phenotypes in ards hosts with different inflammatory states. Chest, 2024, 166(4): A2203. |
| 121. | Hernández-Beeftink T, Guillen-Guio B, Villar J, et al. Genomics and the acute respiratory distress syndrome: Current and future directions. Int J Mol Sci, 2019, 20(16): 4004. |
| 122. | Maddali MV, Churpek M, Pham T, et al. Validation and utility of ARDS subphenotypes identified by machine learning models using clinical data: An observational multi-cohort retrospective analysis. Lancet Respir Med, 2022, 10(4): 367-377. |
- 1. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA, 2016, 315(8): 788.
- 2. ARDS Definition Task Force; Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23): 2526-2533.
- 3. Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primer, 2019, 5(1): 18.
- 4. Montgomery AB. Early description of ARDS. Chest, 1991, 99(1): 261-262.
- 5. Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet, 1967, 290(7511): 319-323.
- 6. Riviello ED, Kiviri W, Twagirumugabe T, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali Modification of the Berlin Definition. Am J Respir Crit Care Med, 2016, 193(1): 52-59.
- 7. Matthay MA, Arabi Y, Arroliga AC, et al. A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med, 2024, 209(1): 37-47.
- 8. 袁雪燕, 刘玲, 邱海波. 2023急性呼吸窘迫综合征全球新标准: 进步与局限. 中华医学杂志, 2024, 104(15): 1216-1220.
- 9. Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet, 2022, 400(10358): 1145-1156.
- 10. Blondonnet R, Constantin JM, Sapin V, et al. A pathophysiologic approach to biomarkers in acute respiratory distrefss syndrome. Dis Markers, 2016, 2016: 1-20.
- 11. Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med, 1982, 3(1): 35-56.
- 12. Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med, 2001, 163(6): 1376-1383.
- 13. Bellani G, Pham T, Laffey JG. Missed or delayed diagnosis of ARDS: a common and serious problem. Intensive Care Med, 2020, 46(6): 1180-1183.
- 14. García-Laorden MI, Lorente JA, Flores C, et al. Biomarkers for the acute respiratory distress syndrome: how to make the diagnosis more precise. Ann Transl Med, 2017, 5(14): 283-283.
- 15. Van DerZeeP, Rietdijk W, Somhorst P, et al. A systematic review of biomarkers multivariately associated with acute respiratory distress syndrome development and mortality. Crit Care, 2020, 24(1): 243.
- 16. Bime C, Camp SM, Casanova N, et al. The acute respiratory distress syndrome biomarker pipeline: crippling gaps between discovery and clinical utility. Transl Res, 2020, 226: 105-115.
- 17. Schmidt AM, Yan SD, Yan SF, et al. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta, 2000, 1498(2-3): 99-111.
- 18. 王燕燕, 刘志慧. 可溶性晚期糖基化终末产物受体在肺部疾病中作用的研究进展. 江苏医药, 2023, 49(7): 743-747.
- 19. Jabaudon M, Blondonnet R, Roszyk L. Soluble receptor for advanced glycation end-products predicts impaired alveolar fluid clearance in acute respiratory distress syndrome. Am J Respir Crit Care Med, 2015, 192(2): 191-199.
- 20. Sternberg DI, Gowda R, Mehra D, et al. Blockade of receptor for advanced glycation end product attenuates pulmonary reperfusion injury in mice. J Thorac Cardiovasc Surg, 2008, 136(6): 1576-1585.
- 21. Jabaudon M, Blondonnet R, Pereira B, et al. Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data. Intensive Care Med, 2018, 44(9): 1388-1399.
- 22. Singh H, Agrawal DK. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev Res, 2022, 83(6): 1257-1269.
- 23. 曾宪飞, 卢东雪, 张西京, 等. 5种血清学标志物对急性呼吸窘迫综合征的诊断和预后预测价值. 西安交通大学学报(医学版), 2019, 40(4): 588-592.
- 24. Ware LB, Koyama T, Zhao Z, et al. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Crit Care, 2013, 17(5): R253.
- 25. Park J, Pabon M, Choi AMK, et al. Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: validation in US and Korean cohorts. BMC Pulm Med, 2017, 17(1): 204.
- 26. Jayadi J, Airlangga P, Kusuma E, et al. Correlation between serum surfactant protein-D level with respiratory compliance and acute respiratory distress syndrome in critically ill COVID-19 patients: a retrospective observational study. Int J Crit Illn Inj Sci, 2022, 12(4): 204-210.
- 27. Peukert K, Seeliger B, Fox M, et al. SP-D serum levels reveal distinct epithelial damage in direct human ARDS. J Clin Med, 2021, 10(4): 737.
- 28. Delgado C, Krötzsch E, Jiménez-Alvarez LA, et al. Serum surfactant protein D (SP-D) is a prognostic marker of poor outcome in patients with A/H1N1 virus infection. Lung, 2015, 193(1): 25-30.
- 29. García-Mouton C, Hidalgo A, Arroyo R, Echaide M, et al. Pulmonary surfactant and drug delivery: an interface-assisted carrier to deliver surfactant protein SP-D into the airways. Front Bioeng Biotechnol, 2021, 8: 613276.
- 30. Ghati A, Dam P, Tasdemir D, et al. Exogenous pulmonary surfactant: a review focused on adjunctive therapy for severe acute respiratory syndrome coronavirus 2 including SP-A and SP-D as added clinical marker. Curr Opin Colloid Interface Sci, 2021, 51: 101413.
- 31. Almuntashiri S, Zhu Y, Han Y, et al. Club cell secreted protein CC16: Potential applications in prognosis and therapy for pulmonary diseases. J Clin Med, 2020, 9(12): 4039.
- 32. Lin J, Tao W, Wei J, et al. Correction to: Renal dysfunction reduces the diagnostic and prognostic value of serum CC16 for acute respiratory distress syndrome in intensive care patients. BMC Pulm Med, 2021, 21(1): 54.
- 33. Wutzler S, Lehnert T, Laurer H, et al. Circulating levels of Clara cell protein 16 but not surfactant protein D identify and quantify lung damage in patients with multiple injuries. J Trauma Inj Infect Crit Care, 2011, 71(2): E31-E36.
- 34. Chase A, Almuntashiri S, Sikora A, et al. Club cell secretory protein-derived acute respiratory distress syndrome phenotypes predict 90-day mortality: a reanalysis of the fluids and catheter treatment Trial. Crit Care Explor, 2022, 4(6): e0711.
- 35. Han Y, Zhu Y, Almuntashiri S, et al. Extracellular vesicle-encapsulated CC16 as novel nanotherapeutics for treatment of acute lung injury. Mol Ther, 2023, 31(5): 1346-1364.
- 36. Kohno N, Inoue Y, Hamada H, et al. Difference in sero-diagnostic values among KL-6-associated mucins classified as cluster 9. Int J Cancer, 1994, 57(S8): 81-83.
- 37. Ye C, Xu B, Yang J, et al. Mucin1 relieves acute lung injury by inhibiting inflammation and oxidative stress. Eur J Histochem, 2021, 65(4): 3331.
- 38. Han L, Wang S, Ma J, et al. Expression and significance of serum KL-6 in patients with acute respiratory distress syndrome. J Thorac Dis, 2023, 15(12): 6988-6995.
- 39. Franco-Montoya ML, Bourbon JR, Durrmeyer X, et al. Pulmonary effects of keratinocyte growth factor in newborn rats exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol, 2009, 297(5): L965-L976.
- 40. McAuley DF, Cross LM, Hamid U, et al. Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Respir Med, 2017, 5(6): 484-491.
- 41. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 1997, 277(5322): 55-60.
- 42. Bhandari V, Choo-Wing R, Lee CG, et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med, 2006, 12(11): 1286-1293.
- 43. Parikh SM. Targeting Tie2 and the host vascular response in sepsis. Sci Transl Med, 2016, 8(335): 335fs9.
- 44. Lomas-Neira JL, Heffernan DS, Ayala A, et al. Blockade of endothelial growth factor, angiopoietin-2, reduces indices of ards and mortality in mice resulting from the dual-insults of hemorrhagic shock and sepsis. Shock, 2016, 45(2): 157-165.
- 45. Reilly JP, Wang F, Jones TK, et al. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ards development: evidence from mendelian randomization and mediation analysis. Intensive Care Med, 2018, 44(11): 1849-1858.
- 46. Rosenberger CM, Wick KD, Zhuo H, et al. Early plasma angiopoietin-2 is prognostic for ARDS and mortality among critically ill patients with sepsis. Crit Care, 2023, 27(1): 234.
- 47. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell, 2019, 176(6): 1248-1264.
- 48. Medford ARL. Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): paradox or paradigm?. Thorax, 2006, 61(7): 621-626.
- 49. Koh H, Tasaka S, Hasegawa N, et al. Vascular endothelial growth factor in epithelial lining fluid of patients with acute respiratory distress syndrome. Respirology, 2008, 13(2): 281-284.
- 50. Zhang Z, Lu D shi, Zhang D qing, et al. Targeted antagonism of vascular endothelial growth factor reduces mortality of mice with acute respiratory distress syndrome. Curr Med Sci, 2020, 40(4): 671-676.
- 51. Kawecki C, Lenting PJ, Denis CV. von Willebrand factor and inflammation. J Thromb Haemost, 2017, 15(7): 1285-1294.
- 52. Bryckaert M, Rosa JP, Denis CV, et al. Of von Willebrand factor and platelets. Cell Mol Life Sci, 2015, 72(2): 307-326.
- 53. 冯雨慧, 邹兰兰, 李凡, 崔晨航, 乔俊英. 血清血管性血友病因子在急性肺损伤/急性呼吸窘迫综合征患者中表达的meta分析. 临床荟萃, 2024, 39(10): 877-881.
- 54. Ma S, Zhao ML, Wang K, et al. Association of Ang-2, vWF, and EVLWI with risk of mortality in sepsis patients with concomitant ARDS: a retrospective study. J Formos Med Assoc, 2020, 119(5): 950-956.
- 55. Schmal H, Czermak BJ, Lentsch AB, et al. Soluble ICAM-1 activates lung macrophages and enhances lung injury1. J Immunol, 1998, 161(7): 3685-3693.
- 56. Wen L, Moser M, Ley K. Molecular mechanisms of leukocyte β2 integrin activation. Blood, 2022, 139(24): 3480-3492.
- 57. Celik E, Faridi MohdH, Kumar V, et al. Agonist leukadherin-1 increases CD11b/CD18-dependent adhesion via membrane tethers. Biophys J, 2013, 105(11): 2517-2527.
- 58. Pang X, He X, Qiu Z, et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther, 2023, 8: 1.
- 59. Liang NW, Wilson C, Davis B, et al. Modeling lung endothelial dysfunction in sepsis-associated ARDS using a microphysiological system. Physiol Rep, 2024, 12(13): e16134.
- 60. Williams JG, Jones RL, Yunger TL, et al. Comparison of 16 pediatric acute respiratory distress syndrome-associated plasma biomarkers with changing lung injury severity. Pediatr Crit Care Med, 2024, 25(1): e31-e40.
- 61. Davey A, McAuley DF, O’Kane CM. Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. Eur Respir J, 2011, 38(4): 959-970.
- 62. Gueders MM, Foidart JM, Noel A, et al. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol, 2006, 533(1-3): 133-144.
- 63. Hartog CM, Wermelt JA, Sommerfeld CO, et al. Pulmonary matrix metalloproteinase excess in hospital-acquired pneumonia. Am J Respir Crit Care Med, 2003, 167(4): 593-598.
- 64. O’Kane CM, McKeown SW, Perkins GD, et al. Salbutamol up-regulates matrix metalloproteinase-9 in the alveolar space in the acute respiratory distress syndrome. Crit Care Med, 2009, 37(7): 2242-2249.
- 65. Jones TW, Almuntashiri S, Chase A, et al. Plasma matrix metalloproteinase-3 predicts mortality in acute respiratory distress syndrome: a biomarker analysis of a randomized controlled trial. Respir Res, 2023, 24(1): 166.
- 66. Aschner Y, Zemans RL, Yamashita CM, et al. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS. Chest, 2014, 146(4): 1081-1091.
- 67. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev, 2007, 87(4): 1285-1342.
- 68. Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011, 41(2): 271-90.
- 69. Hästbacka J, Linko R, Tervahartiala T, et al. Serum MMP-8 and TIMP-1 in critically ill patients with acute respiratory failure: TIMP-1 is associated with increased 90-day mortality. Anesth Analg, 2014, 118(4): 790-798.
- 70. Almuntashiri S, Jones TW, Wang X, et al. Plasma TIMP-1 as a sex-specific biomarker for acute lung injury. Biol Sex Differ, 2022, 13(1): 70.
- 71. Chernikov IV, Staroseletz YYu, Tatarnikova IS, et al. siRNA-mediated timp1 silencing inhibited the inflammatory phenotype during acute lung injury. Int J Mol Sci, 2023, 24(2): 1641.
- 72. González-López A, García-Prieto E, Batalla-Solís E, et al. Lung strain and biological response in mechanically ventilated patients. Intensive Care Med, 2012, 38(2): 240-247.
- 73. Chesnutt AN, Matthay MA, Tibayan FA, et al. Early detection of type III procollagen peptide in acute lung injury. Pathogenetic and prognostic significance. Am J Respir Crit Care Med, 1997, 156(3): 840-845.
- 74. Steinberg KP, Hudson LD, Goodman RB, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med, 2006, 354(16): 1671-1684.
- 75. Ricard JD, Dreyfuss D, Saumon G. Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med, 2001, 163(5): 1176-1180.
- 76. Bhandary YP, Shetty SK, Marudamuthu AS, et al. Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system. Am J Physiol-Lung Cell Mol Physiol, 2012, 302(5): L463-L473.
- 77. Zuber SP. Cytokines and their physiologic and pharmacologic functions in inflammation: a review. Intern J Pharm Life Sci, 2011, 2(10): 1247-1263.
- 78. Selman M. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc, 2006, 3(4): 364-372.
- 79. Wang J, Yang X, Li Y, et al. Specific cytokines in the inflammatory cytokine storm of patients with COVID-19-associated acute respiratory distress syndrome and extrapulmonary multiple-organ dysfunction. Virol J, 2021, 18(1): 117.
- 80. Yu SY, Koh DH, Choi M, et al. Clinical efficacy and safety of interleukin-6 receptor antagonists (tocilizumab and sarilumab) in patients with COVID-19: a systematic review and meta-analysis. Emerg Microbes Infect, 2022, 11(1): 1154-1165.
- 81. 桑智慧, 邢佳丽, 陈建荣. 急性呼吸窘迫综合征患者呼出气冷凝液和血清中IL-8检测的临床意义. 临床急诊杂志, 2017, 18(10): 735-739.
- 82. Cesta MC, Zippoli M, Marsiglia C, et al. The role of interleukin-8 in lung inflammation and injury: Implications for the management of COVID-19 and hyperinflammatory acute respiratory distress syndrome. Front Pharmacol, 2022, 12: 808797.
- 83. Li Q, Gu Y, Tu Q, et al. Blockade of interleukin-17 restrains the development of acute lung injury. Scand J Immunol, 2016, 83(3): 203-211.
- 84. Ritchie ND, Ritchie R, Bayes HK, et al. IL-17 can be protective or deleterious in murine pneumococcal pneumonia. PLOS Pathog, 2018, 14(5): e1007099.
- 85. Li C, Yang P, Sun Y, et al. IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus. Cell Res, 2012, 22(3): 528-538.
- 86. Bryushkova EA, Skatova VD, Mutovina ZY, et al. Tocilizumab, netakimab, and baricitinib in patients with mild-to-moderate COVID-19: an observational study. PLoS One, 2022, 17(8): e0273340.
- 87. Maslennikov R, Ivashkin V, Vasilieva E, et al. Interleukin 17 antagonist netakimab is effective and safe in the new coronavirus infection (COVID-19). Eur Cytokine Netw, 2021, 32(1): 8-14.
- 88. Paine R, Standiford TJ, Dechert RE, et al. A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med, 2012, 40(1): 90-97.
- 89. Matute-Bello G, Liles CW, Radella FI, et al. Modulation of neutrophil apoptosis by granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor during the course of acute respiratory distress syndrome. Crit Care Med, 2000, 28(1): 1.
- 90. Herold S, Hoegner K, Vadász I, et al. Inhaled granulocyte/macrophage colony-stimulating factor as treatment of pneumonia-associated acute respiratory distress syndrome. Am J Respir Crit Care Med, 2014, 189(5): 609-611.
- 91. Lang FM, Lee KMC, Teijaro JR, et al. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol, 2020, 20(8): 507-514.
- 92. Mehta P, Porter JC, Manson JJ, et al. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities. Lancet Respir Med, 2020, 8(8): 822-830.
- 93. Bauer TT, Montón C, Torres A, et al. Comparison of systemic cytokine levels in patients with acute respiratory distress syndrome, severe pneumonia, and controls. Thorax, 2000, 55(1): 46-52.
- 94. Mortaz E, Tabarsi P, Jamaati H, et al. Increased serum levels of soluble tnf-α receptor is associated with ICU mortality in COVID-19 patients. Front Immunol, 2021, 12: 592727.
- 95. Pooladanda V, Thatikonda S, Bale S, et al. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death Dis, 2019, 10(2): 81.
- 96. Watanabe R, Wada H, Watanabe Y, et al. Activity and antigen levels of thrombin-activatable fibrinolysis inhibitor in plasma of patients with disseminated intravascular coagulation. Thromb Res, 2001, 104(1): 1-6.
- 97. Ware LB, Koyama T, Billheimer DD, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest, 2010, 137(2): 288-296.
- 98. Prabhakaran P, Ware LB, White KE, et al. Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol, 2003, 285(1): L20-L28.
- 99. J Jalkanen V, Yang R, Linko R, et al. SuPAR and PAI-1 in critically ill, mechanically ventilated patients. Intensive Care Med, 2013, 39(3): 489-496.
- 100. Cornet AD, Groeneveld ABJ, Hofstra JJ, et al. Recombinant human activated protein C in the treatment of acute respiratory distress syndrome: a randomized clinical trial. PLoS One, 2014, 9(3): e90983.
- 101. 孙会志, 孙海英, 李亚平. 脓毒症并发ARDS患者血清sTM、suPAR、Ang-2水平与炎症因子及预后的关系. 检验医学与临床, 2022(8): 1075-1079.
- 102. Liu Z, Li Y, Zhao Q, Kang Y. Association and predictive value of soluble thrombomodulin with mortality in patients with acute respiratory distress syndrome: systematic review and meta-analysis. Ann Transl Med, 2023, 11(4): 181-181.
- 103. Ward PA, Grailer JJ. Acute lung injury and the role of histones. Transl Respir Med, 2014, 2(1): 1.
- 104. 金杨, 江雪梅, 孙梦, 等. 细胞外组蛋白对ARDS早期诊断和预后评估的临床价值. 同济大学学报 (医学版), 2019, 40(1): 5.
- 105. Kutcher ME, Xu J, Vilardi RF, et al. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg, 2012, 73(6): 1389-1394.
- 106. Christiaans SC, Wagener BM, Esmon CT, et al. Protein C and acute inflammation: a clinical and biological perspective. Am J Physiol-Lung Cell Mol Physiol, 2013, 305(7): L455-L466.
- 107. Oddo M, Schaller MD, Feihl F, et al. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med, 2006, 34(7): 1865-1873.
- 108. Matthay MA, Ware LB. Plasma protein C levels in patients with acute lung injury: Prognostic significance. Crit Care Med, 2004, 32(Supplement): S229-S232.
- 109. Kaziani K, Vassiliou AG, Kotanidou A, et al. Activated protein C has no effect on pulmonary capillary endothelial function in septic patients with acute respiratory distress syndrome: Association of endothelial dysfunction with mortality. Infect Dis Ther, 2018, 7(S1): 15-25.
- 110. Li G, Yan K, Zhang W, et al. ARDS and aging: TYMS emerges as a promising biomarker and therapeutic target. Front Immunol, 2024, 15: 1365206.
- 111. Du M, Garcia JGN, Christie JD, et al. Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensive Care Med, 2021, 47(7): 761-771.
- 112. Lin M, Xu F, Sun J, et al. Integrative multi-omics analysis unravels the host response landscape and reveals a serum protein panel for early prognosis prediction for ARDS. Crit Care, 2024, 28(1): 213.
- 113. Brown RM, Semler MW, Zhao Z, <i>et al</i>. Plasma angiopoietin-2 (Ang2) and receptor for advanced glycation end products (RAGE) improve diagnosis of ards compared to provider clinical assessment in adult trauma patients. In: A42. ARDS: RISK, TREATMENT, AND OUTCOMES. May 1, 2015, A1617-A1617. Doi:.
- 114. Bime C, Casanova N, Oita RC, et al. Development of a biomarker mortality risk model in acute respiratory distress syndrome. Crit Care, 2019, 23(1): 410.
- 115. Zhao Z, Wickersham N, Kangelaris KN, et al. External validation of a biomarker and clinical prediction model for hospital mortality in ARDS. Intensive Care Med, 2017, 43(8): 1123-1131.
- 116. Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med, 2014, 2(8): 611-620.
- 117. Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med, 2018, 6(9): 691-698.
- 118. Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med, 2017, 195(3): 331-338.
- 119. Slim MA, van Amstel RBE, Bos LDJ, et al. Inflammatory subphenotypes previously identified in ARDS are associated with mortality at intensive care unit discharge: a secondary analysis of a prospective observational study. Crit Care, 2024, 28(1): 151.
- 120. Yu F. Metabolomics-based exploration of metabolic phenotypes in ards hosts with different inflammatory states. Chest, 2024, 166(4): A2203.
- 121. Hernández-Beeftink T, Guillen-Guio B, Villar J, et al. Genomics and the acute respiratory distress syndrome: Current and future directions. Int J Mol Sci, 2019, 20(16): 4004.
- 122. Maddali MV, Churpek M, Pham T, et al. Validation and utility of ARDS subphenotypes identified by machine learning models using clinical data: An observational multi-cohort retrospective analysis. Lancet Respir Med, 2022, 10(4): 367-377.

