Objective To systematically evaluate the diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps. Methods Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, China National Knowledge Infrastructure, Chongqing VIP and Wanfang databases were searched. The diagnostic trials of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps were comprehensively searched. The search time limit was from January 1, 2000 to October 31, 2022. The included studies were evaluated according to the Quality Assessment of Diagnostic Accuracy Studies-2, and the data were meta-analysed with RevMan 5.3, Meta-Disc 1.4 and Stata 13.0 statistical softwares. Results Finally, 11 articles were included, including 2178 patients. Meta-analysis results of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps showed that the pooled sensitivity was 0.91, the pooled specificity was 0.88, the pooled positive likelihood ratio was 7.41, the pooled negative likelihood ratio was 0.10, the pooled diagnostic odds ratio was 76.45, and the area under the summary receiver operating characteristic curve was 0.957. Among them, 5 articles reported the diagnosis of small adenomatous polyps (diameter <5 mm) by the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system. The results showed that the pooled sensitivity and the pooled specificity were 0.93 and 0.91, respectively, and the area under the summary receiver operating characteristic curve was 0.971. Five articles reported the accuracy of endoscopic diagnosis for adenomatous polyps of those with insufficient experience. The results showed that the pooled sensitivity and the pooled specificity were 0.84 and 0.76, respectively. The area under the summary receiver operating characteristic curve was 0.848. Compared with the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system, the difference was statistically significant (Z=1.979, P=0.048). Conclusion The artificial intelligence assisted narrow-band imaging endoscopy diagnostic system has a high diagnostic accuracy, which can significantly improve the diagnostic accuracy for colorectal adenomatous polyps of those with insufficient endoscopic experience, and can effectively compensate for the adverse impact of their lack of endoscopic experience.
Compared with traditional medical devices, artificial intelligence medical devices face greater challenges in the process of clinical trials due to their related characteristics of artificial intelligence technology. This paper focused on the challenges and risks in each stage of clinical trials on artificial intelligence medical devices for assisted diagnosis, and put forward corresponding coping strategies, with the aim to provide references for the performance of high-quality clinical trials on artificial intelligence medical devices and shorten the research period in China.
ObjectiveTo explore the application of artificial intelligence in postoperative follow-up of day surgery patients, so as to establish an intelligent medical framework, promote the intelligent process of hospitals, and improve the management level of day surgery.MethodsThe artificial intelligence phonetic system was carried out by the Day Surgery Center, Renji Hospital, Shanghai Jiaotong University School of Medicine on June 1st, 2018. Through the system, the artificial intelligence voice system based on speech and semantic recognition technology was adopted to connect the data of the information center in the hospital to carry out postoperative follow-up of day surgery patients. We selected the 2 245 patients followed up by the artificial intelligence phonetic system from June 1st to November 30th 2018 (the AI follow-up group) and the 2 576 patients followed up by the traditional manual method from January 2nd to May 31st 2018 (the manual follow-up group), to compare the telephone connection rate, information collection rate, and call duration between them.ResultsThere was no statistically significant difference in telephone connection rate (85.70% vs. 86.68%) or information collection rate (98.86% vs. 98.48%) between the AI follow-up group and the manual follow-up group (P>0.05); but there was a statistically significant difference in call duration between the AI follow-up group and the manual follow-up group [(165.48±43.28) vs. (135.37±36.31) seconds, P<0.05], and the AI follow-up group had a longer call duration.ConclusionsThe application of artificial intelligence phonetic system in surgery has a good performance in call connection rate and information collection integrity. It plays an active role in improving efficiency, extending medical services and strengthening medical safety in the management of day surgery.
With the development of society and the progress of technology, artificial intelligence (AI) and big data technology have penetrated into all walks of life in social production and promoted social production and lifestyle greatly. In the medical field, the applications of AI, such as AI-assisted diagnosis and treatment, robots, medical imaging and so on, have greatly promoted the development and transformation of the entire medical industry. At present, with the support of national policy, market, and technology, we should seize the opportunity of AI development, so as to build the first-mover advantage of AI development. Of course, the development and challenges are coexisted. In the future development process, we should objectively analyze the gap between our country and developed countries, think about the unfavorable factors such as AI chips and data problems, and extend the application and service of AI and big data to all links of medical industry, integrate with clinic fully, so as to better promote the further development of AI medicine treatment in China.
ObjectiveTo evaluate the use of machine learning algorithms for the prediction and characterization of cardiac thrombosis in patients with valvular heart disease and atrial fibrillation. MethodsThis article collected data of patients with valvular disease and atrial fibrillation from West China Hospital of Sichuan University and its branches from 2016 to 2021. From a total of 2 515 patients who underwent valve surgery, 886 patients with valvular disease and atrial fibrillation were included in the study, including 545 (61.5%) males and 341 (38.5%) females, with a mean age of 55.62±9.26 years, and 192 patients had intraoperatively confirmed cardiac thrombosis. We used five supervised machine learning algorithms to predict thrombosis in patients. Based on the clinical data of the patients (33 features after feature screening), the 10-fold nested cross-validation method was used to evaluate the predictive effect of the model through evaluation indicators such as area under the curve, F1 score and Matthews correlation coefficient. Finally, the SHAP interpretation method was used to interpret the model, and the characteristics of the model were analyzed using a patient as an example. ResultsThe final experiment showed that the random forest classifier had the best comprehensive evaluation indicators, the area under the receiver operating characteristic curve was 0.748±0.043, and the accuracy rate reached 79.2%. Interpretation and analysis of the model showed that factors such as stroke volume, peak mitral E-wave velocity and tricuspid pressure gradient were important factors influencing the prediction. ConclusionThe random forest model achieves the best predictive performance and is expected to be used by clinicians as an aided decision-making tool for screening high-embolic risk patients with valvular atrial fibrillation.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Early diagnosis and effective management are important to reduce atrial fibrillation‐related adverse events. Photoplethysmography (PPG) is often used to assist wearables for continuous electrocardiograph monitoring, which shows its unique value. The development of PPG has provided an innovative solution to AF management. Serial studies of mobile health technology for improving screening and optimized integrated care in atrial fibrillation have explored the application of PPG in screening, diagnosing, early warning, and integrated management in patients with AF. This review summarizes the latest progress of PPG analysis based on artificial intelligence technology and mobile health in AF field in recent years, as well as the limitations of current research and the focus of future research.
ObjectiveTo review and evaluate the research progress of the robot-assisted joint arthroplasty.MethodsThe domestic and foreign related research literature on robot-assisted joint arthroplasty was extensively consulted. The advantages, disadvantages, effectiveness, and future prospects were mainly reviewed and summarized.ResultsThe widely recognized advantages of robot-assisted joint arthroplasty are digital and intelligent preoperative planning, accurate intraoperative prosthesis implantation, and quantitative soft tissue balance, as well as good postoperative imaging prosthesis position and alignment. However, the advantages of effectiveness are still controversial. The main disadvantages of robot-assisted joint arthroplasty are the high price of the robot system, the prolonged operation time, and the increased radioactive damage of the imaging-dependent system.ConclusionCompared to traditional arthroplasty, robot-assisted joint arthroplasty can improve the accuracy of the prosthesis position and assist in the quantitative assessment of soft tissue tension, and the repeatability rate is high. In the future, further research is needed to evaluate the clinical function and survival rate of the prosthesis, as well as to optimize the robot system.
ObjectiveTo analyze the predictive value of ensemble classification algorithm of random forest for delirium risk in ICU patients with cardiothoracic surgery. MethodsA total of 360 patients hospitalized in cardiothoracic ICU of our hospital from June 2019 to December 2020 were retrospectively analyzed. There were 193 males and 167 females, aged 18-80 (56.45±9.33) years. The patients were divided into a delirium group and a control group according to whether delirium occurred during hospitalization or not. The clinical data of the two groups were compared, and the related factors affecting the occurrence of delirium in cardiothoracic ICU patients were predicted by the multivariate logistic regression analysis and the ensemble classification algorithm of random forest respectively, and the difference of the prediction efficiency between the two groups was compared.ResultsOf the included patients, 19 patients fell out, 165 patients developed ICU delirium and were enrolled into the delirium group, with an incidence of 48.39% in ICU, and the remaining 176 patients without ICU delirium were enrolled into the control group. There was no statistical significance in gender, educational level, or other general data between the two groups (P>0.05). But compared with the control group, the patients of the delirium group were older, length of hospital stay was longer, and acute physiology and chronic health evaluationⅡ(APACHEⅡ) score, proportion of mechanical assisted ventilation, physical constraints, sedative drug use in the delirium group were higher (P<0.05). Multivariate logistic regression analysis showed that age (OR=1.162), length of hospital stay (OR=1.238), APACHEⅡ score (OR=1.057), mechanical ventilation (OR=1.329), physical constraints (OR=1.345) and sedative drug use (OR=1.630) were independent risk factors for delirium of cardiothoracic ICU patients. The variables in the random forest model for sorting, on top of important predictor variable were: age, length of hospital stay, APACHEⅡ score, mechanical ventilation, physical constraints and sedative drug use. The diagnostic efficiency of ensemble classification algorithm of random forest was obviously higher than that of multivariate logistic regression analysis. The area under receiver operating characteristic curve of ensemble classification algorithm of random forest was 0.87, and the one of multivariate logistic regression analysis model was 0.79.ConclusionThe ensemble classification algorithm of random forest is more effective in predicting the occurrence of delirium in cardiothoracic ICU patients, which can be popularized and applied in clinical practice and contribute to early identification and strengthening nursing of high-risk patients.
ObjectiveTo analyze the application effects of artificial intelligence (AI) software and Mimics software in preoperative three-dimensional (3D) reconstruction for thoracoscopic anatomical pulmonary segmentectomy. MethodsA retrospective analysis was conducted on patients who underwent thoracoscopic pulmonary segmentectomy at the Second People's Hospital of Huai'an from October 2019 to March 2024. Patients who underwent AI 3D reconstruction were included in the AI group, those who underwent Mimics 3D reconstruction were included in the Mimics group, and those who did not undergo 3D reconstruction were included in the control group. Perioperative related indicators of each group were compared. ResultsA total of 168 patients were included, including 73 males and 95 females, aged 25-81 (61.61±10.55) years. There were 79 patients in the AI group, 53 patients in the Mimics group, and 36 patients in the control group. There were no statistical differences in gender, age, smoking history, nodule size, number of lymph node dissection groups, postoperative pathological results, or postoperative complications among the three groups (P>0.05). There were statistical differences in operation time (P<0.001), extubation time (P<0.001), drainage volume (P<0.001), bleeding volume (P<0.001), and postoperative hospital stay (P=0.001) among the three groups. There were no statistical differences in operation time, extubation time, bleeding volume, or postoperative hospital stay between the AI group and the Mimics group (P>0.05). There was no statistical difference in drainage volume between the AI group and the control group (P=0.494), while there were statistical differences in operation time, drainage tube retention time, bleeding volume, and postoperative hospital stay (P<0.05). ConclusionFor patients requiring thoracoscopic anatomical pulmonary segmentectomy, preoperative 3D reconstruction and preoperative planning based on 3D images can shorten the operation time, postoperative extubation time and hospital stay, and reduce intraoperative bleeding and postoperative drainage volume compared with reading CT images only. The use of AI software for 3D reconstruction is not inferior to Mimics manual 3D reconstruction in terms of surgical guidance and postoperative recovery, which can reduce the workload of clinicians and is worth promoting.
With the development of computer technology, artificial intelligence (AI) has gradually been applied to various industries in society. In the healthcare industry, AI provides more choices for disease diagnosis and treatment, and also brings new vitality to the development of clinical medicine. In order to better promote the use of AI technology to improve the quality of otolaryngology teaching, this article provides a brief overview of the application of AI in otolaryngology, including the use of neural networks, deep learning for image analysis, disease diagnosis and treatment. It also discusses the significance and implementation methods of AI application in otolaryngology teaching from several aspects such as course design, teaching practice, and effectiveness assessment.