Objective To investigate the cl inical efficacy of the cancellous granule-type calcium phosphate cement in repair bone defect. Methods Between July 2008 and July 2009, 35 patients (42 l imbs) with fractures, nonunion, and benign bone tumor were treated with cancellous granule-type calcium phosphate cement. There were 32 males and 3 females,with an age range from 9 to 73 years (median, 41 years), including 24 l imb fractures (19 cases), 4 osteotomy for deformity of ulna and radius (2 cases), 2 femur intertrochanteric bony cysts (2 cases), 3 enchondroma (3 cases), 5 bone defect at donor il ium (5 cases), 3 nonunion (3 cases), and 1 lumbar spinal stenosis (1 case). The size of bone defect was 1-5 cm. Bone defect was repaired with cancellous granule-type calcium phosphate cement (1-5 g). Results All cases were followed up 8-23 months (13.7 months on average). Thirty-nine incisions (32 cases) healed by first intention and the suture was removed after 10-14 days. Incision dehiscence occurred in 2 cases, and wounds healed after second debridement and removal of artificial bone. Exudation of incision occurred in 1 case, and wound healed after symptomatic treatment. No local red swell ing, higher temperature, maculopapule, and ulceration of skin occurred at implantation site. X-ray films showed that bone graft fusion was achieved and bone defect was radically repaired at 6 months after operation and artificial bone was absorbed completely at 12 months. Conclusion Cancellous granule-type calcium phosphate cement can be used as a new graft bone material, which is suitable for defect fill ing after traumatic fracture, benign bone tumors, and il iac bone donor.
ObjectiveTo study the preparation and properties of the hyaluronic acid (HA)/α-calcium sulfate hemihydrate (α-CSH)/β-tricalcium phosphate (β-TCP) material (hereinafter referred to as composite material). Methods Firstly, the α-CSH was prepared from calcium sulfate dihydrate by hydrothermal method, and the β-TCP was prepared by wet reaction of soluble calcium salt and phosphate. Secondly, the α-CSH and β-TCP were mixed in different proportions (10∶0, 9∶1, 8∶2, 7∶3, 5∶5, and 3∶7), and then mixed with HA solutions with concentrations of 0.1%, 0.25%, 0.5%, 1.0%, and 2.0%, respectively, at a liquid-solid ratio of 0.30 and 0.35 respectively to prepare HA/α-CSH/ β-TCP composite material. The α-CSH/β-TCP composite material prepared with α-CSH, β-TCP, and deionized water was used as the control. The composite material was analyzed by scanning electron microscope, X-ray diffraction analysis, initial/final setting time, degradation, compressive strength, dispersion, injectability, and cytotoxicity. ResultsThe HA/α-CSH/β-TCP composite material was prepared successfully. The composite material has rough surface, densely packed irregular block particles and strip particles, and microporous structures, with the pore size mainly between 5 and 15 μm. When the content of β-TCP increased, the initial/final setting time of composite material increased, the degradation rate decreased, and the compressive strength showed a trend of first increasing and then weakening; there were significant differences between the composite materials with different α-CSH/β-TCP proportion (P<0.05). Adding HA improved the injectable property of the composite material, and it showed an increasing trend with the increase of concentration (P<0.05), but it has no obvious effect on the setting time of composite material (P>0.05). The cytotoxicity level of HA/α-CSH/β-TCP composite material ranged from 0 to 1, without cytotoxicity. Conclusion The HA/α-CSH/β-TCP composite materials have good biocompatibility. Theoretically, it can meet the clinical needs of bone defect repairing, and may be a new artificial bone material with potential clinical application prospect.
The primary results of five patients in whomthe block hydroxyapatite artificial bone (BHAB)used in maxillofacial plastic repair were reported. All incisions healed up with no evidence ofinfection. None of the implants was rejected norhad resorption changes. Satisfactory estheticaleffects were maintained. The results demonst-rated BHAB had a good biocampatibility andcould be used as a bone graft substitute inmaxillofacial plastic repair. This kind of material could be carved and contoured ...
The hydroxyapatite particles were used to repair 23 cases of depressed deformities of face. The patients were follwed up for 3 to 8 months and the short termresults were satisfactory. The operative procedure was briefly introduced. The advantages and attentions relevant to the operation were discussed.
Objective To evluate the clinical outcome of autograftsof ilium and interbody fusion cage or bone morphogenetic protein(BMP)/artificial bone material/ cage in treating lumbar spondylolisthesis. Methods From January 1997 to January 2004,114 patients with lumbar spondylolisthesis were treated with posterior lumbar interbody fusion and pedicle screw fixation. There were 45 males and 69 females with an average age of 43 years ranging from 32 to 61 years. Of 114patients, 85 cases were classified as degree Ⅰ, 24 cases as degree Ⅱ and 5 cases as degree Ⅲ. The patients were divided into three groups accordingto the material used for interbody fusion: autografts of ilium (group A, n=42), interbody fusion cages(group B, n=36), and BMP/artificial bone material/ cage (group C, n=36).The clinical and radiographic results of the patients were compared among three groups. Results All patients were followed from 13 to 30 months with an average of 15 months. There were no statistically significant differences in surgical time, blood loss, and disc space height of preoperation(P>0.05) among three groups. No severe complication occurred in the three groups(P>0.05). The excellent and good rates in groups A,B and C were 81.0%, 80.6%, and 83.3% respectively, showing no statisticallysignificant difference(P>0.05).The fusion rate of group C(97.0%) was significantly higher than those of group A(81.0%) and group B(83.3%) (P<0.05) after 1 year of operation.And the average loss of disc space height in groups B and C was significantly lower than that in group A(P<0.05). Conclusion Higher fusion rate and lower loss of disc space height can beobtained in treating lumbar spondylolisthesis with BMP/artificial bone materiel.It is an effective method in the treatment of spondylolisthesis.
OBJECTIVE: To study the effect of platelet-rich plasma in the repair of bone defect. METHODS: Segmental bone defects of 1 cm were created in the mid-upper part of bilateral radius of 24 New Zealand white rabbits. One side was randomly chosen as the experimental side, which was filled with artificial bone with platelet-rich plasma (PRP). The other side filled with artificial bone without PRP as the control. After 2, 4, 8 and 12 weeks of implantation, the gross, radiological, histological observations, and computer graphic analysis were performed to investigate the bone healing of the defect in both sides. RESULTS: Two weeks after operation, new bone and fibrous tissue formation in both the experimental and the control sides were observed only in the areas adjacent to the cut ends of the host bone, but the amount of new tissue in the experimental side was much more than that in the control side. In the 4th and 8th weeks, the surface of the artificial bone was covered with a large amount of new bones, the artificial bone was bridged tightly with the host bone by callus in the experimental side, while new bone was limited mainly in the cut ends and was less mature in the control side. In the 12th weeks, bone defects were entirely healed in the experimental side, which were covered completely with cortical bone, while new bone formation was only observed in the ends of artificial bone and there were not continuous bone callus on the surface in the control side. CONCLUSION: Artificial bone with PRP is effective in the repair of segmental bone defects, and PRP could improve the healing of bone defect.
Objective To investigate the optimal mixing ratio of recombinant human bone morphogenetic protein 2 (rhBMP-2) with porous calcium phosphate cement (PCPC) and autologous bone as bone grafting material for the repair of large bone defects using Masquelet technique. The effect of platelet-rich plasma (PRP) on the healing of bone defects was evaluated under the optimal ratio of mixed bone. Methods Fifty-four New Zealand White rabbits were taken to establish a 2 cm long bone defect model of the ulna and treated using the Masquelet technique. Two parts of the experiment were performed in the second phase of the Masquelet technique. First, 36 modeled experimental animals were randomly divided into 4 groups (n=9) according to the mass ratio of autologous bone and rhBMP-2/PCPC. Group A: autologous bone (100%); group B: 25% autologous bone+75% rhBMP-2/PCPC; group C: 50% autologous bone+50% rhBMP-2/PCPC; group D: 75% autologous bone+25% rhBMP-2/PCPC. The animals were executed at 4, 8, and 12 weeks postoperatively for general observation, imaging observation, histological observation (HE staining), alkaline phosphatase (ALP) activity assay, and biomechanical assay (three-point bending test) were performed to assess the osteogenic ability and to determine the optimal mixing ratio. Then, 18 modeled experimental animals were randomly divided into 2 groups (n=9). The control group was implanted with the optimal mixture ratio of autologous bone+rhBMP-2/PCPC, and the experimental group was implanted with the optimal mixture ratio of autologous bone+rhBMP-2/PCPC+autologous PRP. The same method was used to observe the above indexes at 4, 8, and 12 weeks postoperatively. Results The bone healing process from callus formation to the cortical connection at the defected gap could be observed in each group after operation; new bone formation, bridging with the host bone, and bone remodeling to normal bone density were observed on imaging observation; new woven bone, new capillaries, bone marrow cavity, and other structures were observed on histological observation. The ALP activity of each group gradually increased with time (P<0.05); the ALP activity of group A was significantly higher than that of the other 3 groups at each time point after operation, and of groups C and D than group B (P<0.05); there was no significant difference between groups C and D (P>0.05). Biomechanical assay showed that the maximum load in three-point bending test of each group increased gradually with time (P<0.05), and the maximum loads of groups A and D were significantly higher than that of groups B and C at each time point after operation (P<0.05), but there was no significant difference between groups A and D (P>0.05). According to the above tests, the optimal mixing ratio was 75% autogenous bone+25% rhBMP-2/PCPC. The process of new bone formation in the experimental group and the control group was observed by gross observation, imaging examination, and histological observation, and the ability of bone formation in the experimental group was better than that in the control group. The ALP activity and maximum load increased gradually with time in both groups (P<0.05); the ALP activity and maximum load in the experimental group were significantly higher than those in the control group at each time point after operation (P<0.05), and the maximum load in the experimental group was also significantly higher than that in group A at 12 weeks after operation (P<0.05). ConclusionIn the second phase of Masquelet technique, rhBMP-2/PCPC mixed with autologous bone to fill the bone defect can treat large bone defect of rabbit ulna, and it has the best osteogenic ability when the mixing ratio is 75% autologous bone+25% rhBMP-2/PCPC. The combination of PRP can improve the osteogenic ability of rhBMP-2/PCPC and autologous bone mixture.
Objective To investigate the clinical application of self-settingcalcium phosphate cement (CPC) in bone defect repair of extremities. Methods From May 1998 to January 2000, 32 cases of bone defect, in 36 sites, were repairedand reviewed, aged from 4 to 59 years old (24.7 years old on average), with bone defect 2 to 125 cm2 in size (13.1 cm2 on average). The causes of the bone defect werefracture, bone cyst, iliac bone harvesting, fibrous dysplasia, enchondroma and bone tuberculosis, which involved femur, iliac, tibia, humerus, phalanx, fibula, calcaneus, talus and acetabulum. All of the cases were followed up for 1 to 23 months, 15.3 months on average, before radiographic examination. Results All operations were successful and no general response was observed in all of the cases. X-ray examination showed an integrity interface between CPC and bone. And CT showed no gap existed. There was no increase of serum calcium and phosphate levels. Conclusion CPC is applicable in the low- or non-weight-bearing site of the extremities.
Abstract To investigate the ectopic new bone formation following implantation of bovine hydroxyapatite Bio-oss together with free periosteum, 12 chabb: ch rabbits were selected. In 10 rabbits, Bio-oss block together with free periosteum was implanted in the gastrocnemius muscle of one leg randomly, and Bio-oss block alone was implanted in the same muscle of the other leg. In the other 2 rabbits, the periosteum was implanted into the gastrocnemius musle of both legs. Histologic examination and quantitative analysis of newbone formation were performed at 3 and 6 weeks postoperatively. The results showed that in the legs implanted bovine hydroxyapatite Bio-oss together with freeperiosteum, new bone formation began at 5th day after implantation. The area ofnew bone composed of 19.0% of the specimens at 3 weeks postoperatively. No boneformation through out the experimental period in Bio-oss block alone implantedlegs and also periosteum implanted legs. We concluded that bovine hydroxyapatite Bio-oss has a good capacity of osteoconduction. New bone can be formed after the implantation of hydroxyapatite combined with free periosteum.