Objective To investigate the combined effects of digastric muscle low frequency modulated medium frequency electro-acupuncture therapy and voice training for dysphagia in patients who underwent aortic arch surgery. Methods Forty-two consecutive patients with dysphagia after aortic arch surgery between October 2014 and November 2017 were divided into two groups including an observation group and a control group. There were 21 patients in each group. There were 17 males and 4 females at age of 51.0±6.5 years in the observation group, while 18 males and 3 females at age of 49.8±7.3 years in the control group. The patients in the observation group underwent electroacupuncture therapy and voice training (20 min per day for each therapy, 2 weeks), while the patients in the control group only received safe swallowing education and rehabilitation guidance (2 weeks). The test results, such as fibrolaryngoscope and functional oral intake scale (FOIS) score, and the data of computer phonatory detection, before and after the intervention were compared. Results The fibrolaryngoscope of vocal cords significantly decreased and the FOIS score significantly increased after digastric muscle low frequency modulated medium frequency electro-acupuncture therapy and voice training in the observation group(6.30 vs. 4.60, P<0.05). Bucking was obviously reduced. The indicators of hoarse degree, such as median pitch, fundamental frequency, jitter (0.60%±0.96%vs. 1.99%±1.86%, P=0.033), shimmer (2.47%±4.26% vs. 5.89%±3.66%, P=0.043), maximum phonation time (15.31±9.10 s vs. 3.72±8.83 s, P=0.006), maximum and loud phonation time (9.30±5.73 s vs. 2.32±2.99 s, P=0.039), mean noise-to-harmonics ratio (23.99±10.17 vs .9.98±9.37, P=0.006) and mean harmonics-to-noise ratio (0.03±0.02 vs. 0.17±0.23, P=0.019) improved after the treatment in both groups. But the improvement in the observation group was significantly better than that in the control group. Conclusion The combination of digastric muscle low frequency modulated medium frequency electro-acupuncture therapy and voice training on dysphagia in patients who underwent aortic arch surgery can significantly improve the swallowing function of patients. Meanwhile, it also helps the recovery of phonic function and improves the ability of feeding and communication in these patients.
Objective To investigate the expression of transforminggrowth factor β1(TGF-β1) and insulin-like growth factorⅠ(IGF-Ⅰ)in new bone after low frequency micromovement. Methods Fifteen female sheep from Shandong province were involved in the study and their bilateral tibias transversely osteotomized in the middle shafts with a defect of 2 mm.The hind limbs were fixed with unilateral external fixators connected to a controlled micromovement device. Ten days after osteotomy, one hind limb of each sheep randomlywas selected to perform micromovement at an amplitude of 0.25 mm and a frequency of 1 Hertz, 30 min a day for 4 weeks ( micromovement group). The other hindlimb served as the control group. Five sheep were sacrificed at 3,4 and 6 weeks after osteotomy, respectively, and specimens were harvested for detecting the expression of TGF-β1 and IGF-Ⅰby immunohistochemistry and RT-PCR. Results Immunohistochemistry: In the third postoperative week in the micromovement group, the expression of TGF-β1 was detected in different areas of new chondrocytes at the margin of callus, mainly in proliferating area, and IGF-Ⅰexpressed in osteoblasts at the margin of endochondral ossification area, calcified and mature chondrocytes and osteocytes. There was seldom expression ofIGF-Ⅰ and little expression of TGF-β1 in the corresponding area in the control one. In the 4th postoperative week in the micromovement group, theexpression of TGF-β1 diminished gradually with the mature of new bone and be located in extracellular matrix and osteoblasts around ossified areas; The expression ofIGF-Ⅰ reached the peak and be located mainly in osteoblasts of new bone surface, maturing osteocytes and calcifing osteoid. But there was little expression of them in the control group. In the sixth postoperative week in the micromovement group, there was a little expression of IGF-Ⅰ expression but little expression of TGF-β1; there was nearly no expression of them in the control group. In the micromovement group, the absorbance values of TGF-β1 at 3 and 4 weeksand of IGF-Ⅰat 3, 4 and 6 weeks were significantlyhigher than those in control group(P<0.05). RTPCR: In the third and fourth postoperative weeks in the micromovement group, there was higher expression of mRNA of TGF-β1 and TGF-I than those in control group; in the sixth postoperative week, the expression diminished gradually, but was higher than that in control group. The absorbance values of TGF-β1 at 3 and 4 weeks and IGF-Ⅰat 3, 4 and 6weeks were significantly higher than those of control group(P<0.05). Conclusion Low frequency and controlled micromovement in the early stage of the fracture healing can promote the expression of TGF-β1 and IGF-Ⅰ.They worked together to regulate the process of the endochondral ossification, while in the late stage the differentiation of osteocytes and mineralization of osteoid were regulated mainly by IGF-Ⅰ, which played an important role in regulating the cell biological behavior during micromovement.
【摘要】 目的 观察低频超声(20 kHz)辐照联合静脉注射微泡造影剂SonoVue对裸鼠前列腺癌(Du145)移植瘤的抑瘤效应,并探讨其可能的抑瘤机制。 方法 通过细胞移植和瘤块移植方法建立24只裸鼠前列腺癌Du145移植瘤模型,随机分为超声微泡组、单纯超声组、单纯微泡组和对照组,每组各6只。超声微泡组:尾静脉注射0.2 mL SonoVue的同时对瘤体行20 kHz超声辐照,辐照强度200 mW/cm2;单纯超声组:尾静脉注射生理盐水0.2 mL,同时超声辐照2 min;单纯微泡组:尾静脉注射SonoVue 0.2 mL同时行假照,各组均隔天1次,共3次,对照组不做任何处理。治疗后测量瘤体大小,绘制瘤体生长曲线,计算抑瘤率。首次治疗后14 d剥离瘤体,通过光学显微镜、电子显微镜观察肿瘤组织病理改变。免疫组织化学方法观察CD34阳性染色血管,计算肿瘤微血管密度(micro vessel density,MVD),比较各组间MVD的差异。 结果 24只裸鼠均成功植瘤。治疗后超声微泡组瘤体体积均数明显小于其他3组(Plt;0.05),抑瘤率为62.7%。光学显微镜下超声微泡组瘤体组织大部分损伤坏死,电子显微镜下超声微泡组肿瘤内微血管的内皮细胞损伤,线粒体肿大,基底膜断裂。超声微泡组瘤体内CD34阳性染色微血管数减少,其MVD值显著低于其他各组。 结论 20 kHz低频超声辐照联合微泡造影剂SonoVue可有效抑制裸鼠人前列腺癌移植瘤的生长,其抑瘤机制可能是通过超声空化效应破坏肿瘤的微血管实现的。【Abstract】 Objective To investigate the anti-tumor effect induced by low-frequency ultrasound (20 kHz) radiation combined with intravenous injection of microbubbles on human prostate carcinoma xenograft in nude mice, and to discuss its probable mechanism. Methods Human prostate carcinoma xenograft model in 24 nude mice were established with human prostate carcinoma Du145 cells inoculation and sub-graft through mice, which were randomly divided into ultrasound+microbubble, ultrasound, microbubble, and control group, with 6 mice in each group. In the ultrasound+microbubble group, 0.2 mL SonoVue was injected intravenously, followed by 20 kHz ultrasound exposure of 200 mW/cm2 at every other day for 3 times totally. Mice in the ultrasound group and the microbubbles group were only treated with ultrasound radiation and microbubbles injection, respectively. The volume of gross tumors was measured, and tumor growth curve was drawn. The ratio of anti-tumor growth was calculated. The mice were sacrificed 14 days after the last ultrasound exposure. Specimens of the exposed tumor tissues were obtained and observed pathologically under light microscope and transmission electron microscope. CD34 positive vessels were counted in all the tumor slices by immunohistochemistry, and the micro-vessels density(MVD)of the tumor was also calculated. Results Du145 prostate tumor model was successfully established in all the mice. The average gross tumor volume of the ultrasound+microbubble group was significant lower compared with the other two groups after treatment (Plt;0.05), and the ratio of anti-tumor growth was 62.7%. Histological examination showed signs cell injury in the ultrasound+microbubble group. Electron microscopic examination revealed that the endothelium of vessels in the tumor was injured. The amount of CD34 positive vessels and MVD of the ultrasound+microbubble group was less than that of the other two groups. Conclusion The low-frequency ultrasound of 20 kHz exposure combined with microbubbles can be used to ablate human prostate carcinoma xenograft in nude mice, which is probably realized through micro-vessels destroyed by cavitation effect of ultrasound.
To enhance speech recognition, as well as Mandarin tone recognition in noice, we proposed a speech coding strategy called zero-crossing of fine structure in low frequency (LFFS) for cochlear implant based on low frequency non-uniform sampling (LFFS for short). In the range of frequency perceived boundary of human ear, we used zero-crossing time of the fine structure to generate the stimulus pulse sequences based on the frequency selection rule. Acoustic simulation results showed that although on quiet background the performance of LFFS was similar to continuous interleaved sampling (CIS), on the noise background the performance of LFFS in Chinese tones, words and sentences were significantly better than CIS. In addition to this, we also got better Mandarin recognition factors distribution by using the improved index distribution model. LFFS contains more tonal information which was able to effectively improve Mandarin recognition of the cochlear implant.
Objective To explore the change of EEG waveform recorded by clinical EEG under different filtering parameters. Methods22 abnormal EEG samples of epilepsy patients with abundant abnormal waveforms recorded in Peking University first hospital were selected as the case group (abnormal group), and 30 normal EEG samples of healthy people with matched sex and age were selected as the control group (normal group). Visual examination and power spectrum analysis were then performed to compare the difference of wave forms and spectrum power under different settings of filter parameter between the two groups. ResultsThe results of visual examination show that, lower high-frequency filtering has an effect on the fast wave composition of EEG and may distort and reduce the spike wave. Higher low-frequency filtering has an effect on the overall background and slow wave activity of EEG and may change the amplitude morphology of some slow waves. The results of power spectrum analysis show that, Compare the difference between the EEG normal group and the abnormal group, the main difference under the settings of 0.5~70Hz was on the θ and α3 frequency band, different brain regions were slightly different. In the central region, the difference in the high frequency band (α3, γ1, γ2) decreases or disappears with the decrease of the high frequency filtering. In the rest of the brain, the difference in the δ band appears gradually with the increase of the low frequency filtering. Compare the difference between frontal area and occipital area under different filter set, for the normal group, under the settings of 0.5 ~ 70 Hz, the difference between two regions is mainly on the θ, γ1 and γ2 band. When high frequency filter reduces, the difference between two regions on high frequency band (γ1, γ2) are gradually reduced or disappeared. And when low frequency filter increases, the difference on δ band appears. For the abnormal group, the difference between frontal and occipital region under the settings of 0.5 ~ 70 Hz is mainly on γ1 and γ2 bands. When the high-frequency filter decreases, the difference between two regions on high-frequency bands are gradually decreased or disappeared. All the results can be corrected by FDR. ConclusionThe results show that the filter setting has a significant influence on EEG results. In clinical application, we should strictly set 0.5 ~ 70 Hz bandpass filtering as the standard.
Amblyopia is a visual development deficit caused by abnormal visual experience in early life, mainly manifesting as defected visual acuity and binocular visual impairment, which is considered to reflect abnormal development of the brain rather than organic lesions of the eye. Previous studies have reported abnormal spontaneous brain activity in patients with amblyopia. However, the location of abnormal spontaneous activity in patients with amblyopia and the association between abnormal brain function activity and clinical deficits remain unclear. The purpose of this study is to analyze spontaneous brain functional activity abnormalities in patients with amblyopia and their associations with clinical defects using resting-state functional magnetic resonance imaging (fMRI) data. In this study, 31 patients with amblyopia and 31 healthy controls were enrolled for resting-state fMRI scanning. The results showed that spontaneous activity in the right angular gyrus, left posterior cerebellum, and left cingulate gyrus were significantly lower in patients with amblyopia than in controls, and spontaneous activity in the right middle temporal gyrus was significantly higher in patients with amblyopia. In addition, the spontaneous activity of the left cerebellum in patients with amblyopia was negatively associated with the best-corrected visual acuity of the amblyopic eye, and the spontaneous activity of the right middle temporal gyrus was positively associated with the stereoacuity. This study found that adult patients with amblyopia showed abnormal spontaneous activity in the angular gyrus, cerebellum, middle temporal gyrus, and cingulate gyrus. Furthermore, the functional abnormalities in the cerebellum and middle temporal gyrus may be associated with visual acuity defects and stereopsis deficiency in patients with amblyopia. These findings help explain the neural mechanism of amblyopia, thus promoting the improvement of the treatment strategy for amblyopia.
Aiming at the single treatment and the design separation between treatment and assessment in electrotherapy equipment, a kind of system including low-intermediate frequency treatment and efficacy evaluation was developed. With C8051F020 single-chip microcomputer as the core and the circuit design and software programming used, the system realized the random switch of therapeutic parameters, the collection, display and data storage of pressure pain threshold in the assessment. Experiment results showed that the stimulus waveform, current intensity, frequency, duty ratio of the system output were adjustable, accurate and reliable. The obtained pressure pain threshold had a higher accuracy (<0.3 N) and better stability, guiding the parameter choice in the precise electrical stimulation. It, therefore, provides a reliable technical support for the treatment and curative effect assessment.
ObjectiveSeizure-related respiratory or cardiac dysfunction was once thought to be the direct cause of sudden unexpected death in epilepsy (SUDEP), but both may be secondary to postictal cerebral inhibition. An important issue that has not been explored to date is the neural network basis of cerebral inhibition. Our aim was to investigate the features of neural networks in patients at high risk for SUDEP using a blood oxygen level-dependent (BOLD) resting-state functional MRI (Rs-fMRI) technique. MethodsRs-fMRI data were recorded from 13 patients at high risk for SUDEP and 12 patients at low risk for SUDEP. The amplitude of low-frequency fluctuations (ALFF) values were compared between the two groups to decipt the regional brain activities. ResultsCompared with patients at low risk for SUDEP, patients at high risk exhibited significant ALFF reductions in the right superior frontal gyrus, the left superior orbital frontal gyrus, the left insula and the left thalamus; and ALFF increase in the right middle cigulum gyrus, the right supplementary motor area and the left thalamus. ConclusionsThese findings highlight the need to understand the fundamental neural network dysfunction in SUDEP, which may fill the missing link between seizure-related cardiorespiratory dysfunction and SUDEP, and provide a promising neuroimaging biomarker for risk prediction of SUDEP.
Objective To explore the effect of short-term low-frequency electrical stimulation (SLES) during operation on nerve regeneration in delayed peripheral nerve injury with long gap. Methods Thirty female adult Sprague Dawley rats, weighing 160-180 g, were used to prepare 13-mm defect model by trimming the nerve stumps. Then all rats were randomly divided into 2 groups, 15 rats in each group. After nerve defect was bridged by the contralateral normal sciatic nerve, SLES was applied in the experimental group, but was not in the control group. The spinal cords and dorsal root ganglions (DRGs) were harvested to carry out immunofluorescence histochemistry double staining for growth-associated proteins 43 (GAP-43) and brain-derived neurotrophic factor (BDNF) at 1, 2, and 7 days after repair. Fluorogold (FG) retrograde tracing was performed at 3 months after repair. The mid-portion regenerated segments were harvested to perform Meyer’s trichrome staining, immunofluorescence double staining for neurofilament (NF) and soluble protein 100 (S-100) on the transversely or longitudinal sections at 3 months after repair. The segment of the distal sciatic nerve trunk was harvested for electron microscopy and morphometric analyses to measure the diameter of the myelinated axons, thickness of myelin sheaths, the G ratio, and the density of the myelinated nerve fibers. The gastrocnemius muscles of the operated sides were harvested to measure the relative wet weight ratios. Karnovsky-Root cholinesterase staining of the motor endplate was carried out. Results In the experimental group, the expressions of GAP-43 and BDNF were higher than those in the control group at 1 and 2 days after repair. The number of labeled neurons in the anterior horn of gray matter in the spinal cord and DRGs at the operated side from the experimental group was more than that from the control group. Meyer’s trichrome staining, immunofluorescence double staining, and the electron microscopy observation showed that the regenerated nerves were observed to develop better in the experimental group than the control group. The relative wet weight ratio of experimental group was significantly higher than that of the control group (t=4.633,P=0.000). The size and the shape of the motor endplates in the experimental group were better than those in the control group. Conclusion SLES can promote the regeneration ability of the short-term (1 month) delayed nerve injury with long gap to a certain extent.
Repetitive transcranial magnetic stimulation (rTMS) can influence the stimulated brain regions and other distal brain regions connecting to them. The purpose of the study is to investigate the effects of low-frequency rTMS over primary motor cortex on brain by analyzing the brain functional connectivity and coordination between brain regions. 10 healthy subjects were recruited. 1 Hz rTMS was used to stimulate primary motor cortex for 20 min. 1 min resting state electroencephalography (EEG) was collected before and after the stimulation respectively. By performing phase synchronization analysis between the EEG electrodes, the brain functional network and its properties were calculated. Signed-rank test was used for statistical analysis. The result demonstrated that the global phase synchronization in alpha frequency band was decreased significantly after low-frequency rTMS (P<0.05). The phase synchronization was down-regulated between motor cortex and ipsilateral frontal/parietal cortex, and also between contralateral parietal cortex and bilateral frontal cortex. The mean degree and global efficiency of brain functional networks in alpha frequency band were significantly decreased (P<0.05), and the mean shortest path length were significantly increased (P<0.05), which suggested the information transmission of the brain networks and its efficiency was reduced after low-frequency rTMS. This study verified the inhibition function of the low-frequency rTMS to brain activities, and demonstrated that low-frequency rTMS stimulation could affect both stimulating brain regions and distal brain regions connected to them. The findings in this study could be of guidance to clinical application of low-frequency rTMS.