Hypoxia and other factors are related to cognitive impairment. Hyperbaric oxygen therapy can improve tissue oxygen supply to improve brain hypoxia. Based on the basic principle of hyperbaric oxygen therapy, hyperbaric oxygen has been widely used in recent years for cognitive impairment caused by stroke, brain injury, neurodegenerative disease, neuroinflammatory disease and metabolic encephalopathy. This article will review the basic mechanism of hyperbaric oxygen, and summarize and discuss the improvement of hyperbaric oxygen therapy on cognitive and brain diseases, in order to provide relevant reference for clinical treatment.
With the acceleration of the aging in the world and our society, osteoarthritis has become a health concern for patients and health workers. At present, its treatment mainly relies on drug treatment, surgical treatment and rehabilitation. As a safe, non-invasive and simple treatment, pulsed electromagnetic field (PEMF) therapy has been used in clinical treatment of osteoporosis, promoting fracture healing and improving symptoms of osteoarthritis. However, the mechanism of PEMF in the treatment of knee osteoarthritis is still unclear. This paper reviews the effects of PEMF on apoptosis, cytokines, cartilage and subchondral bone in knee osteoarthritis in animal experiments, and the changes of chondrocyte morphology and extracellular matrix in cell experiments, aiming to enable medical workers to better understand the status and development of PEMF in the treatment of knee osteoarthritis in basic experimental researches.
In recent years, regenerative medical technology and modern rehabilitation technology complement each other and develop rapidly. Regenerative rehabilitation with tissue regeneration and functional recovery as the core concept arises at the historic moment. Regenerative rehabilitation can quickly repair damaged or diseased tissues and organs, and restore or improve the function of patients to the greatest extent. This paper introduces the origin and development of regenerative rehabilitation, discusses the research progress and significance of related strategies from three aspects of neurological, motor and circulatory diseases, and stress the importance of regenerative rehabilitation in helping patients to obtain the best curative effect.
Objective To review the regulation and mechanism of the microRNAs (miRNAs) in the bone and cartilage tissue. Methods Recent l iterature concerning the regulation and mechanism of the miRNAs in the bone and cartilage tissue was extensively reviewed, summarized, and analyzed. Results Recently miRNAs is a hot topic in the bone and cartilage tissue. More and more materials show its important regulatory role in osteogenesis and cartilage growth andregeneration, but the definite mechanisms have not been clear yet. Conclusion The study on miRNAs of bone and cartilage tissue can provide a new access to understanding the degenerative osteoarthritic diseases.
In recent years, the development of artificial shoulder arthroplasty has been rapid, but postoperative patients often have problems such as joint swelling, pain, activity limitation, muscle strength decline and various complications, which need to be accompanied by standardized and correct rehabilitation treatment. In this paper, we review the postoperative rehabilitation treatment program of artificial shoulder arthroplasty, the selection of the timing of rehabilitation treatment, the continuity treatment of rehabilitation and the rehabilitation strategies to improve the clinical efficacy in the postoperative period, with a view to providing reference and basis for the development of a reasonable rehabilitation program for postoperative patients.