An experimental study, repairing of articular cartilage by free periosteal graft in rabbit, was designed. Two 4.5mm wide circular full-thikness cartilage defects were drilled on the medial femoral condyle, in 24 adult rabbits. A graft of periosteum from the proximal tibia was fitted into the defect (right side), by using fibrinogen glue. On the control side (left side), the defect was fulled with fibrinogen glue, or repaired by periehondrial grafts which were taken from their own ribs. This experiment indicated that both periosteum and perichnodrium have the same potential of cartilagious regeneration. And the processes of regeneration are also the same. So we suggest to use free autologous periosteal grafts to replace free autologous perichondrial grafts to cure the articular cartilage defects.
The drug-target protein interaction prediction can be used for the discovery of new drug effects. Recent studies often focus on the prediction of an independent matrix filling algorithm, which apply a single algorithm to predict the drug-target protein interaction. The single-model matrix-filling algorithms have low accuracy, so it is difficult to obtain satisfactory results in the prediction of drug-target protein interaction. AdaBoost algorithm is a strong multiple classifier combination framework, which is proved by the past researches in classification applications. The drug-target interaction prediction is a matrix filling problem. Therefore, we need to adjust the matrix filling problem to a classification problem before predicting the interaction among drug-target protein. We make full use of the AdaBoost algorithm framework to integrate several weak classifiers to improve performance and make accurate prediction of drug-target protein interaction. Experimental results based on the metric datasets show that our algorithm outperforms the other state-of-the-art approaches and classical methods in accuracy. Our algorithm can overcome the limitations of the single algorithm based on machine learning method, exploit the hidden factors better and improve the accuracy of prediction effectively.
Objective To investigate the effect of inducible nitric oxide synth ase (iNOS) or cyclooxygenase-2 (COX-2) on retinal neovascularization and its possible mechanism in oxygen-induced retinopathy (OIR) mouse model. Methods Retinal neovascularization was induced by oxygen with different concentration. The expression of iNOS, COX-2, matrix metalloproteinases 2 (MMP-2) and vascular end othelial growth factor (VEGF) in the retinae of experimental animals were analyzed by immunohistochemistry, realtime polymerase chain reaction and western blotting technologies. Results The inhibition of COX-2 or iNOS obviously attenuated retinal neovascularization and decreased the expression of VEGF and MMP-2. The iNOS inhibition decreased COX-2 expression, and vice versa. Conclusions COX-2 and iNOS may play a role in retinal neovascularization in OIR mouse model, which may act by regulating the expression of VEGF and MMP-2.
Objective To observe the changes of intraocular pressure (IOP) after intravitreous injection wih triamcinolone acetonide (TA) and their affected factors. Methods The clinical data of 125 patients (125eyes) who had undergone intravitreous injection with TA were retrospectively analyzed. The patients (52 males and 73 females) aged from 17 to 83 years with the average age of 56.5. There were 49 patient (39.2%) with diabetic retinopathy (DR), 56 (44.8%) with retinal vein occlusion (RVO), and 20 (16.0%) with exudative age-related macular degeneration (AMD). One day before the treatment, IOP was measured by Goldmann applanation tonometry, and the basic IOP was 7~31 mm Hg (1 mm Hg=0.133 kPa) and the average IOP was (14.69plusmn;3.72) mm Hg. The patients were divided into two groups according to the basic IOP:below 15 mm Hg group (n=64) and 15 mm Hg or above group (n=61). All of the patients underwent intravitreous injection with 4mg TA. IOP was measured 1 day, 3 days, 1 week, 2 weeks, and 1 month after the treatment in the same way, respectively, and later was measured once every 1 month. The follow-up period was 3~21 months with the mean of 5 months. The elevation of IOP would be defined as the pressure of 21mmHg or higher. The changes of IOP in patients before and after the treatment, and with different diseases and ages were analyzed. Results Thirty-six patients (28.8%) had elevation of IOP after the treatment, out of whom 97.2% had the elevation within 3 months after the injection and decreased to the basic level 7 months after the injection. In these patients, there were 11 (17.19%) in the below 15 mm Hg group and 25 (40.98%) in 15 mm Hg or above group, and the difference between the two groups was statistically significant (P<0.01). During the followup period, the mean maximum IOP was (20.09plusmn;7.58) mmHg, which was 5.43 mmHg higher than that before the treatment(P<0.001). The mean maximum IOP of 53 patients (42.4%) after the treatment was 5 mm Hg higher than that before the treatment. The mean maximum IOP during the followup period was (18.19plusmn;4.73)mmHg in DR group,(22.50plusmn;9.30)mmHg in RVO group, and(18.12plusmn;6.09)mmHg in AMD group. The occurrence of the elevation of IOP in RVO group was obviously higher than that in the other 2 groups (P<0.01). The result of regression analysis showed that age was correlative with the elevation of IOP after the treatment: more risks of occurrence of high IOP were found in younger patients (P=0.000). Conclusion Elevation of IOP after intravitreous injection with TA is common, which is correlative with the basic IOP, age, and pathogeny. After the intravitreous injection with TA, the elevation of IOP often occurs in patients with high basic IOP before treatment, younger age, and RVO. (Chin J Ocul Fundus Dis, 2007, 23: 115-117)