ObjectiveTo evaluate the risk of bias and reliability of conclusions of systematic reviews (SRs) of lung cancer screening. MethodsWe searched PubMed, EMbase, The Cochrane Library (Issue 2, 2016), Web of Knowledge, CBM, WanFang Data and CNKI to collect SRs of lung cancer screening from inception to February 29th, 2016. The ROBIS tool was applied to assess the risk of bias of included SRs, and then GRADE system was used for evidence quality assessment of outcomes of SRs. ResultsA total of 11 SRs involving 5 outcomes (mortality, detection rate, survival rate, over-diagnosis and potential benefits and harms) were included. The results of risk of bias assessment by ROBIS tool showed:Two studies completely matched the 4 questions of phase 1. In the phase 2, 6 studies were low risk of bias in the including criteria field; 8 studies were low risk of bias in the literature search and screening field; 3 studies were low risk of bias in the data abstraction and quality assessment field; and 5 studies were low risk of bias in the data synthesis field. In the phase 3 of comprehensive risk of bias results, 5 studies were low risk. The results of evidence quality assessment by GRADE system showed:three studies had A level evidence on the outcome of mortality; 1 study had A level evidence on detection; 1 study had A level evidence on survival rate; 3 studies on over-diagnosis had C level evidence; and 2 studies on potential benefits and harms had B level evidence. ConclusionThe risk of bias of SRs of lung cancer screening is totally modest; however, the evidence quality of outcomes of these SRs is totally low. Clinicians should cautiously use these evidence to make decision based on local situation.
The QUADAS-2, QUIPS, and PROBAST tools are not specific for prognostic accuracy studies and the use of these tools to assess the risk of bias in prognostic accuracy studies is prone to bias. Therefore, QUAPAS, a risk of bias assessment tool for prognostic accuracy studies, has recently been developed. The tool combines QUADAS-2, QUIPS, and PROBAST, and consists of 5 domains, 18 signaling questions, 5 risk of bias questions, and 4 applicability questions. This paper will introduce the content and usage of QUAPAS to provide inspiration and references for domestic researchers.
Objective To systematically review the accuracy and consistency of large language models (LLM) in assessing risk of bias in analytical studies. Methods The cohort and case-control studies related to COVID-19 based on the team's published systematic review of clinical characteristics of COVID-19 were included. Two researchers independently screened the studies, extracted data, and assessed risk of bias of the included studies with the LLM-based BiasBee model (version Non-RCT) used for automated evaluation. Kappa statistics and score differences were used to analyze the agreement between LLM and human evaluations, with subgroup analysis for Chinese and English studies. Results A total of 210 studies were included. Meta-analysis showed that LLM scores were generally higher than those of human evaluators, particularly in representativeness of exposed cohorts (△=0.764) and selection of external controls (△=0.109). Kappa analysis indicated slight agreement in items such as exposure assessment (κ=0.059) and adequacy of follow-up (κ=0.093), while showing significant discrepancies in more subjective items, such as control selection (κ=−0.112) and non-response rate (κ=−0.115). Subgroup analysis revealed higher scoring consistency for LLM in English-language studies compared to that of Chinese-language studies. Conclusion LLM demonstrate potential in risk of bias assessment; however, notable differences remain in more subjective tasks. Future research should focus on optimizing prompt engineering and model fine-tuning to enhance LLM accuracy and consistency in complex tasks.
Currently there is no tool designed specifically to assess the risk of bias in the design, conduct or analysis of systematic reviews. ROBIS (Risk Of Bias In Systematic reviews), which was developed lately, aims mainly to assess the risk of bias in the conduct and result interpretation of systematic reviews relating to interventions, etiology, diagnosis and prognosis, as well as the relevance of the systematic review questions and the practice questions that their users want to address. This paper aims to introduce the ROBIS tool to Chinese systematic review developers, guideline developers and other researchers to promote the comprehension of it and its application, so as to improve the quality of systematic reviews in China.
Measurement properties studies of patient-reported outcome measures (PROMs) aims to validate the measurement properties of PROMs. In the process of designing and statistical analysis of these measurement properties studies, bias will occur if there are any defects, which will affect the quality of PROMs. Therefore, the COSMIN (consensus-based standards for the selection of health measurement instruments) team has developed the COSMIN risk of bias (COSMIN-RoB) checklist to evaluate risk of bias of studies on measurement properties of PROMs. The checklist can be used to develop systematic reviews of PROMs measurement properties, and for PROMs developers, it can also be used to guide the research design in the measurement tool development process for reducing bias. At present, similar assessment tools are lacking in China. Therefore, this article aims to introduce the primary contents of COSMIN-RoB checklist and to interpret how to evaluate risk of bias of the internal structure studies of PROMs with examples.
ObjectiveTo interpret ROBIS, a new tool to evaluate the risk of bias in systematic reviews, to promote the comprehension of it and its proper application. MethodsWe explained each item of ROBIS tool, used it to evaluate the risk of bias of a selected intervention review whose title was Cyclophosphamide for Primary Nephrotic Syndrome of Children: A Systematic Review, and judged the risk of bias in the review. ResultsThe selected systematic review as a whole was rated as “high risk of bias”, because there existed high risk of bias in domain 2 to 4, namely identification and selection of studies, data collection and study appraisal, synthesis and findings. The risk of bias in domain 1 (study eligibility criteria) was low. The relevance of identified studies and the review’s research question was appropriately considered and the reviewers avoided emphasizing results on the basis of their statistical significance. ConclusionROBIS is a new tool worthy of being recommended to evaluate risk of bias in systematic reviews. Reviewers should use ROBIS items as standards to conduct and produce high quality systematic reviews.
ObjectiveTo evaluate whether and to what extent the new risk of bias (ROB) tool has been used in Cochrane systematic reviews (CSRs) on acupuncture. MethodsWe searched the Cochrane Database of Systematic Review (CDSR) in issue 12, 2011. Two reviewers independently selected CSRs which primarily focused on acupuncture and moxibustion. Then the data involving in essential information, the information about ROB (sequence generation, allocation concealment, blindness, incomplete outcome data, selective reporting and other potential sources of bias) and GRADE were extracted and statistically analyzed. ResultsIn total, 41CSRs were identified, of which 19 CSRs were updated reviews. Thirty-three were published between 2009 and 2011. 60.98% reviews used the Cochrane Handbook as their ROB assessment tool. Most CSRs gave information about sequence generation, allocation concealment, blindness, and incomplete outcome data, however, half of them (54.55%, 8/69) showed selective reporting or other potential sources of bias. Conclusion"Risk of bias" tools have been used in most CSRs on acupuncture since 2009. However, the lack of evaluation items still remains.
This study aims to introduce how to use the PROBAST (prediction model risk of bias assessment tool) to evaluate risk of bias and applicability of the study of diagnostic or prognostic predictive models, including the introduction of the background, the scope of application and use of the tool. This tool mainly involves the four areas of participants, predictors, outcomes and analyses. The risk of bias in the research is evaluated through the four areas, while the applicability is evaluated in the first three. PROBAST provides a standardized approach to evaluate the critical appraisal of the study of diagnostic or prognostic predictive models, which screens qualified literature for data analysis and helps to establish a scientific basis for clinical decision-making.
This paper summarizes the methodological quality assessment tools of artificial intelligence-based diagnostic test accuracy studies, and introduces QUADAS-AI and modified QUADAS-2. Moreover, this paper summarizes reporting guidelines of these studies as well, and then introduces specific reporting standards in AI-centred research, and checklist for AI in dental research.
证据质量升级的最常见原因是效应量大。当方法学严谨的观察性研究表明风险至少降低或增加2倍时,GRADE建议考虑将证据质量升高1级;当风险至少降低或增加5倍时,考虑将证据质量升高2级。当存在剂量-反应关系,或所有合理的混杂、偏倚会降低明显的治疗效应,或混杂、偏倚使得结果无效为假效应时,系统评价作者和指南制定者也可考虑升高证据质量。其他考虑因素包括起效迅速、潜在的疾病(状态)趋势以及间接证据。