Optical coherence tomography (OCT), as a high-resolution, non-invasive, in-vivo image method has been widely used in retinal field, especially in the examination of fundus diseases. Nowadays, the modality has been gradually popularized in most of the national basic-level hospitals. However, OCT is only employed as a diagnostic tool in most cases, ophthalmologists lack of awareness of further exploring the information behind the raw data. In the era of fast-developing artificial intelligence, on the basis of standardized information management, a more comprehensive OCT database should be established. Further original image processing, lesion analysis, and artificial intelligence development of OCT images will help improve the understanding level of vitreoretinal diseases among clinicians and assist ophthalmologists to make more appropriate clinical decisions.
Replacement of diseased retinal pigment epithelium (RPE) cells with healthy RPE cells by transplantation is one option to treat several retinal degenerative diseases including age-related macular degeneration, which are caused by RPE loss and dysfunction. A cellular scaffold as a carrier for transplanted cells, may hold immense promise for facilitating cell migration and promoting the integration of RPE cells into the host environment. Scaffolds can be prepared from a variety of natural and synthetic materials. Strategies, such as surface modification and structure adjustment, can improve the biomimetic properties of the scaffolds, optimize cell attachment and cellular function following transplantation and lay a foundation of clinical application in the future.
Clustered regularly interspersed short palindromic repeats/Cas system is a powerful genome-editing tool for efficient and precise genome engineering both in vitro and in vivo, with the advantages of easy, convenient and low cost. This technology makes it possible to simultaneously mutate multiple genes in a single fertilized egg, thus to study the gene expression, genetic interaction and gene function. Even though this method is still in its immature stage and its stability is inconclusive, making precision models of ocular diseases through genome editing may provide a positive effect to explore gene targeted therapy in genetic eye disease.
ObjectiveTo observe the effect of internal limiting membrane peeling and transplantation on vision-related quality of life in refractory macular hole.MethodsA retrospective clinical study. Thirty patients (30 eyes) with refractory macular hole diagnosed in Ophthalmology Department of The First Affiliated Hospital of Nanjing Medical University from January to December 2016 were included in this study. There were 13 males (13 eyes) and 17 females (17 eyes), with the mean age of 57.3±6.9 years. There were 15 patients (15 eyes) with large macular diameter, 12 patients (12 eyes) with high myopia macular hole, and 3 patients (3 eyes) with secondary traumatic macular hole. The BCVA examination was performed using the Snellen visual acuity chart, which was converted into logMAR visual acuity. OCT was performed to measure the macular retinal thickness (CRT), base diameter and minimum diameter of macular hole. Then, the macular hole index (MHI) was calculated. The logMAR BCVA was 1.52±0.30, MHI was 0.51±0.19. The Chinese version of visual-related quality of life scale -25 (CVRQoL-25) was used to evaluate the vision-related quality of life of patients. The CVRQoL-25 score was 57.60±7.13. All patients underwent 23G vitrectomy combined with inner limited membrane peeling and autologous ILM transplantation. The follow-up was at least 3 months after surgery. The changes of BCVA, MHI, CRT and CVRQoL-25 score before and after surgery were comparatively analyzed. Paired t test was performed to compare the measurement data before and after surgery, and Spearman rank correlation analysis was used for the correlation analysis among the parameters.ResultsAt 3 months after surgery, the hole closure was detected in 28 eyes (93.3%), not detected in 2 eyes (6.7%). The logMAR BCVA was 1.16±0.33, CRT was 161.00±15.26, and CVRQoL-25 scores was 70.83±9.77. Compared with before surgery, the BCVA (t=4.386, P=0.000) and CVRQoL-25 score (t=-5.991, P=0.000) after surgery were improved. Spearman rank correlation analysis showed that CVRQoL-25 score was negatively correlated with preoperative and postoperative logMAR BCVA (r=−0.536, −0.796; P=0.002, 0.000); positively correlated with preoperative MHI (r=0.421, P=0.020) and postoperative CRT (r=0.589, P=0.001).ConclusionInternal limiting membrane peeling and transplantation for refractory macular hole can significantly improve the vision-related quality of life and visual acuity, while achieved a high hole closure rate (93.3%).
Objective To observe the clinical efficacy of pars plana vitrectomy (PPV) combined with dexamethasone intravitreal implant (DEX) in the treatment of proliferative diabetic retinopathy (PDR). MethodsA prospective randomized controlled study. A total of 57 PDR patients with 79 eyes diagnosed by Department of Ophthalmology of The First Affiliated Hospital of Nanjing Medical University from May 2021 to February 2023 were included in the study. Best corrected visual acuity (BCVA) and optical coherence tomography (OCT) were performed in all affected eyes. Central macular thickness (CMT) was measured by OCT. The patients were randomly divided into control group and experimental group, with 27 cases and 35 eyes and 30 cases and 44 eyes, respectively. All eyes were treated with routine 25G PPV and intraoperative whole-retina laser photocoagulation. At the end of the operation, the experimental group was given 0.7 mg DEX intravitreal injection. At 1, 4, 12, and 24 weeks after operation, the same equipment and methods were used for relevant examinations. The improvement after surgery was assessed according to the diabetic retinopathy severity score (DRSS). Mixed analysis of variance was used to compare logarithm of the minimum angle of resolution BCVA and CMT between the two groups and within the two groups before and after operation. ResultsAt 1, 4, 12 and 24 weeks after surgery, BCVA was significantly improved at different time points after surgery, and the differences were statistically significant (P<0.001). At different time after operation, BCVA and CMT in experimental groups were significantly better than that in control group, with statistical significance (P<0.05). Compared with the CMT before surgery, the CMT at all time point after surgery in experimental group were significantly decreased, and the difference were statistically significant (P<0.05). There was no significant difference one week after eye operation in control group (P=0.315). At 4, 12 and 24 weeks after operation, CMT decreased in control group, and the differences were statistically significant (P<0.05). Compared with before surgery, DRSS increased two steps higher at 1, 4, 12 and 24 weeks after surgery in 20 (45.45%, 20/44), 26 (59.10%, 26/44), 32 (72.73%, 32/44) and 31 (70.45%, 31/44) eyes in the experimental groups, respectively. The control group consisted of 15 (42.86%, 15/35), 15 (42.86%, 15/35), 16 (45.71%, 16/35) and 18 (51.43%, 18/35) eyes, respectively. There was no significant difference in DRSS at 1, 4 and 24 weeks after operation between the control group and the experimental group (P=0.817, 0.178, 0.105). At 12 weeks after surgery, the difference was statistically significant (P=0.020). ConclusionPPV combined with intravitreal injection of DEX in the treatment of PDR can improve postoperative visual acuity, alleviate postoperative macular edema and improve the severity of DR.