west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "可穿戴" 36 results
  • Exploratory study on quantitative analysis of nocturnal breathing patterns in patients with acute heart failure based on wearable devices

    Patients with acute heart failure (AHF) often experience dyspnea, and monitoring and quantifying their breathing patterns can provide reference information for disease and prognosis assessment. In this study, 39 AHF patients and 24 healthy subjects were included. Nighttime chest-abdominal respiratory signals were collected using wearable devices, and the differences in nocturnal breathing patterns between the two groups were quantitatively analyzed. Compared with the healthy group, the AHF group showed a higher mean breathing rate (BR_mean) [(21.03 ± 3.84) beat/min vs. (15.95 ± 3.08) beat/min, P < 0.001], and larger R_RSBI_cv [70.96% (54.34%–104.28)% vs. 58.48% (45.34%–65.95)%, P = 0.005], greater AB_ratio_cv [(22.52 ± 7.14)% vs. (17.10 ± 6.83)%, P = 0.004], and smaller SampEn (0.67 ± 0.37 vs. 1.01 ± 0.29, P < 0.001). Additionally, the mean inspiratory time (TI_mean) and expiration time (TE_mean) were shorter, TI_cv and TE_cv were greater. Furthermore, the LBI_cv was greater, while SD1 and SD2 on the Poincare plot were larger in the AHF group, all of which showed statistically significant differences. Logistic regression calibration revealed that the TI_mean reduction was a risk factor for AHF. The BR_ mean demonstrated the strongest ability to distinguish between the two groups, with an area under the curve (AUC) of 0.846. Parameters such as breathing period, amplitude, coordination, and nonlinear parameters effectively quantify abnormal breathing patterns in AHF patients. Specifically, the reduction in TI_mean serves as a risk factor for AHF, while the BR_mean distinguishes between the two groups. These findings have the potential to provide new information for the assessment of AHF patients.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • A gait signal acquisition and parameter characterization method based on foot pressure detection combined with Azure Kinect system

    The gait acquisition system can be used for gait analysis. The traditional wearable gait acquisition system will lead to large errors in gait parameters due to different wearing positions of sensors. The gait acquisition system based on marker method is expensive and needs to be used by combining with the force measurement system under the guidance of rehabilitation doctors. Due to the complex operation, it is inconvenient for clinical application. In this paper, a gait signal acquisition system that combines foot pressure detection and Azure Kinect system is designed. Fifteen subjects are organized to participate in gait test, and relevant data are collected. The calculation method of gait spatiotemporal parameters and joint angle parameters is proposed, and the consistency analysis and error analysis of the gait parameters of proposed system and camera marking method are carried out. The results show that the parameters obtained by the two systems have good consistency (Pearson correlation coefficient r ≥ 0.9, P < 0.05) and have small error (root mean square error of gait parameters is less than 0.1, root mean square error of joint angle parameters is less than 6). In conclusion, the gait acquisition system and its parameter extraction method proposed in this paper can provide reliable data acquisition results as a theoretical basis for gait feature analysis in clinical medicine.

    Release date:2023-06-25 02:49 Export PDF Favorites Scan
  • 使用表皮肌电监测来检测全面强直-阵挛发作

    该前瞻性多中心Ⅲ期临床试验的目的在于评估在癫痫监测单元(Epilepsy monitoring unit,EMU)中使用可穿戴的表皮肌电图(surface electromyographic,sEMG)监测系统来检测全面强直-阵挛发作(Generalized tonic–clonic seizures,GTCS)的性能和耐受性。199 例有 GTCS 病史的患者被收入 11 个Ⅳ级癫痫中心的 EMU 中,在进行临床视频脑电图(VEEG)监测的同时,也通过在肱二头肌上佩戴可穿戴设备接受了 sEMG 监测。所有 sEMG 数据记录都使用先前开发的检测算法在中心站点处理。将 sEMG 检测到的 GTCS 与 3 名评审专家验证的发作事件进行比较。在所有受试者中,检测算法共检测到了 46 次 GTCS 中的 35 次[76%,95%CI(0.61,0.87)],阳性预测值(Positive predictive value,PPV)为 0.03,平均误报率(False alarm rate,FAR)为 2.52/24 h。对于在肱二头肌中线上方记录到的数据,系统检测到了全部的 29 例 GTCS[100%,95%CI(0.88,1.00)],检测时间平均延迟 7.70 s,PPV 为 6.2%,平均 FAR 为 1.44/24 h。28%(55/199)报告了轻至中度的不良事件,并导致 9% 的研究中止(17/199)。这些不良事件主要是电极贴片引起的皮肤刺激反应,这种情况未经治疗即可缓解。研究中无严重不良事件报告。在肱二头肌上使用 sEMG 监测装置来检测 GTCS 是可行的。正确放置该装置对于检测准确性至关重要,但是对于一些患者而言,减少误报数仍有一定难度。

    Release date:2018-05-22 02:14 Export PDF Favorites Scan
  • Classification and Correlative Technology Development of Wearable Devices

    Wearable devices bring us an innovative human-computer interaction which plays an irreplaceable role in enhancing the users’ ability in environmental awareness, acquirements of their own state and “ubiquitous” computing power. Since 2013, wearable devices have quickly appeared around us. In this article we classify most of the wearable devices which have been appeared in the markets or reported in the literature according to their functions and the positions where they are worn. Furthermore, we review the technologies related to wearable devices, such as sensing technology, wireless communication, power manager, display technology and big data. At last, we analyze the challenges which the wearable devices will face in near future, and look forward to development trends of wearable devices.

    Release date: Export PDF Favorites Scan
  • Design and preliminary validation of a ubiquitous and wearable physiological monitoring system

    To achieve continuously physiological monitoring on hospital inpatients, a ubiquitous and wearable physiological monitoring system SensEcho was developed. The whole system consists of three parts: a wearable physiological monitoring unit, a wireless network and communication unit and a central monitoring system. The wearable physiological monitoring unit is an elastic shirt with respiratory inductive plethysmography sensor and textile electrocardiogram (ECG) electrodes embedded in, to collect physiological signals of ECG, respiration and posture/activity continuously and ubiquitously. The wireless network and communication unit is based on WiFi networking technology to transmit data from each physiological monitoring unit to the central monitoring system. A protocol of multiple data re-transmission and data integrity verification was implemented to reduce packet dropouts during the wireless communication. The central monitoring system displays data collected by the wearable system from each inpatient and monitors the status of each patient. An architecture of data server and algorithm server was established, supporting further data mining and analysis for big medical data. The performance of the whole system was validated. Three kinds of tests were conducted: validation of physiological monitoring algorithms, reliability of the monitoring system on volunteers, and reliability of data transmission. The results show that the whole system can achieve good performance in both physiological monitoring and wireless data transmission. The application of this system in clinical settings has the potential to establish a new model for individualized hospital inpatients monitoring, and provide more precision medicine to the patients with information derived from the continuously collected physiological parameters.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Application status and development prospects of smart wearable devices in cardiovascular diseases

    Cardiovascular disease has caused a huge burden of disease worldwide, and the rapid advancement of smart wearable devices has provided new means for early diagnosis, real-time monitoring, and event prevention of cardiovascular disease. Smart wearable devices can be classified into various categories based on detection signals and physical carrier types. Based on an overview of the composition of such devices, this article further introduces the current cutting-edge research and related market products related to smart blood pressure monitoring, electrocardiogram monitoring, and ultrasound monitoring. It also discusses the future development and challenges of such devices, aiming to provide evidence support for the research and development of smart wearable devices in the diagnosis and treatment of cardiovascular diseases in the future.

    Release date:2024-08-21 02:11 Export PDF Favorites Scan
  • Research on the Method of Blood Pressure Monitoring Based on Multiple Parameters of Pulse Wave

    In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTTPCG). We experimentally verified the detection of blood pressure based on PWTTPCG and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTTPCG. The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy.

    Release date: Export PDF Favorites Scan
  • Wearable devices: Perspectives on assessing and monitoring human physiological status

    This review article aims to explore the major challenges that the healthcare system is currently facing and propose a new paradigm shift that harnesses the potential of wearable devices and novel theoretical frameworks on health and disease. Lifestyle-induced diseases currently account for a significant portion of all healthcare spending, with this proportion projected to increase with population aging. Wearable devices have emerged as a key technology for implementing large-scale healthcare systems focused on disease prevention and management. Advancements in miniaturized sensors, system integration, the Internet of Things, artificial intelligence, 5G, and other technologies have enabled wearable devices to perform high-quality measurements comparable to medical devices. Through various physical, chemical, and biological sensors, wearable devices can continuously monitor physiological status information in a non-invasive or minimally invasive way, including electrocardiography, electroencephalography, respiration, blood oxygen, blood pressure, blood glucose, activity, and more. Furthermore, by combining concepts and methods from complex systems and nonlinear dynamics, we developed a novel theory of continuous dynamic physiological signal analysis—dynamical complexity. The results of dynamic signal analyses can provide crucial information for disease prevention, diagnosis, treatment, and management. Wearable devices can also serve as an important bridge connecting doctors and patients by tracking, storing, and sharing patient data with medical institutions, enabling remote or real-time health assessments of patients, and providing a basis for precision medicine and personalized treatment. Wearable devices have a promising future in the healthcare field and will be an important driving force for the transformation of the healthcare system, while also improving the health experience for individuals.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Three-dimensional virtual dolphin treatment system for children with autism spectrum disorder

    In order to address the problem of traditional dolphin adjuvant therapy such as high cost and its limitation in time and place, this paper introduces a three-dimensional virtual dolphin adjuvant therapy system based on virtual reality technology. By adopting Oculus wearable three-dimensional display, the system combined natural human-computer interaction based on Leap Motion with high-precision gesture recognition and cognitive training, and achieved immersive three-dimensional interactive game for child rehabilitation training purposes. The experimental data showed that the system can effectively improve the cognitive and social abilities of those children with autism spectrum disorder, providing a useful exploration for the rehabilitation of those children.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
  • A design and evaluation of wearable p300 brain-computer interface system based on Hololens2

    Patients with amyotrophic lateral sclerosis ( ALS ) often have difficulty in expressing their intentions through language and behavior, which prevents them from communicating properly with the outside world and seriously affects their quality of life. The brain-computer interface (BCI) has received much attention as an aid for ALS patients to communicate with the outside world, but the heavy device causes inconvenience to patients in the application process. To improve the portability of the BCI system, this paper proposed a wearable P300-speller brain-computer interface system based on the augmented reality (MR-BCI). This system used Hololens2 augmented reality device to present the paradigm, an OpenBCI device to capture EEG signals, and Jetson Nano embedded computer to process the data. Meanwhile, to optimize the system’s performance for character recognition, this paper proposed a convolutional neural network classification method with low computational complexity applied to the embedded system for real-time classification. The results showed that compared with the P300-speller brain-computer interface system based on the computer screen (CS-BCI), MR-BCI induced an increase in the amplitude of the P300 component, an increase in accuracy of 1.7% and 1.4% in offline and online experiments, respectively, and an increase in the information transfer rate of 0.7 bit/min. The MR-BCI proposed in this paper achieves a wearable BCI system based on guaranteed system performance. It has a positive effect on the realization of the clinical application of BCI.

    Release date: Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content