ObjectiveTo summarize and analyze the clinical characteristics of patients with acute diffuse lung changes and respiratory failure.MethodsThe clinical data of patients in the Department of Critical Care Medicine, Dazhou Central Hospital between January 2016 and December 2018 were retrospectively collected, whose main clinical manifestation was acute respiratory distress syndrome with acute onset (<3 weeks) and main imaging manifestation was diffuse changes in both lungs. The clinical characteristics of patients were summarized, and the causes of the disease were explored.ResultsA total of 65 patients with acute diffuse lung changes and respiratory failure were enrolled, including 42 males (64.6%) and 23 females (35.4%). The average age was (57.1±18.4) years, the average time from onset to treatment was (7.5±5.9) d, and the average length of stay in the intensive care unit was (8.9±4.1) d. A total of 23 cases died, with a case-fatality rate of 35.4%. Among the 65 patients, there were 50 case (76.9%) of infectious diseases, including 36 cases of bacterial infections (including 4 cases of tuberculosis), 8 cases of viral infections (all were H1N1 infections), and 6 cases of fungal infections (including 1 case of pneumocystis infection); and there were 15 cases (23.1%) of non-infectious diseases, including 4 cases of acute left heart failure, 2 cases of interstitial pneumonia, 2 cases of vasculitis, 1 case of myositis dermatomyositis, 1 case of aspiration pneumonia, 1 case of acute pulmonary embolism, 1 case of acute drug lung injury, 1 case of neurogenic pulmonary edema, 1 case of drowning, and 1 case of unknown origin.ConclusionsInfectious diseases are the main cause of acute diffuse lung changes and respiratory failure, while among non-infectious diseases, acute heart failure and immune system diseases are common causes.
Objective To analyze different characteristics of extra-vascular lung water ( EVLW) in the patients with acute respiratory distress syndrome( ARDS) , and examine its prognostic value. Methods 23 patients with ARDS admitted between November 2010 and December 2011 were divided into a survival group( n=13) and a dead group( n =10) according to the outcome. The hemodynamic status including extravascular lung water index( EVLWI) was measured in 3 consecutive days, and the relationship between EVLWI and the prognosis of patients was analyzed. Results On the first day of diagnosis, the EVLWI was higher in both groups in comparison with normal value. It was ( 13. 9 ±3. 45) mL/kg in the survival group and ( 14. 87 ±5. 75) mL/kg in the dead group( P gt;0. 05) . However, on the second day, the EVLWI in the survival group dropped significantly after intensive intervention, but the patients in the dead group did not respond well to the treatment and the EVLWI declined slightly. The EVLWI of both groups began to diverge significantly fromeach other, showing average value of ( 11. 07 ±2. 51) mL/kg and ( 15.63 ±5. 05) mL/kg, respectively( P lt; 0. 05) . On the third day, this difference between two groups was still more remarkable, resulting in ( 10.32 ±1.57) mL/kg vs. ( 16. 6 ±4. 33) mL/kg( P lt; 0. 01) . Conclusions The changes of EVLWI can be used to evaluate the effectiveness of treatment and predict the prognosis of patients with ARDS. EVLWI would likely be an indicator to evaluate the pulmonary capillary leakage.
Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic at the end of December 2019, more than 85% of the population in China has been infected. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly affects the respiratory system, especially the lungs. The mortality rate of patients with severe infection is high. A percentage of 6% to 10% of patients will eventually develop into COVID-related acute respiratory distress syndrome (CARDS), which requires mechanical ventilation and extracorporeal membrane oxygenation (ECMO) support. Some patients who survive acute lung injury will subsequently develop post COVID-19 pulmonary fibrosis (PCPF). Both fully treated CARDS and severe PCPF are suitable candidates for lung transplantation. Due to the special course, evaluation strategies are different from those used in patients with common end-stage lung disease. After lung transplantation in COVID-19 patients, special treatment is required, including standardized nucleic acid testing for the novel coronavirus, adjustment strategy of immunosuppressive drugs, and rational use of antiviral drugs, which is a big challenge for the postoperative management of lung transplantation. This consensus was evidence-based written and was reached by experts after multiple rounds of discussions, providing reference for assessment and postoperative management of patients with interstitial pneumonia after COVID-19 infection.
Objective To investigate the guiding value of bedside lung ultrasound and lung stretch index for optimal positive end-expiratory pressure (PEEP) in lung recruitment of patients with acute respiratory distress syndrome (ARDS). Methods From February 2020 to October 2023, 90 patients with ARDS requiring invasive mechanical ventilation were selected from the Department of Critical Care Medicine, the Second Affiliated Hospital of Zhengzhou University. According to the setting method of PEEP after lung recruitment, they were randomly divided into an ultrasound group (45 cases) and a stretch group (45 cases). Both groups were treated with PEEP incremental method for lung recruitment, and the ultrasound group was treated with bedside ultrasound-guided method to set PEEP after lung recruitment. PEEP was set by lung stretch index method in the stretch group. The dynamic changes of oxygenation index (PaO2/FiO2), dynamic compliance (Cdyn), mean airway pressure and peak airway pressure were monitored before lung recruitment and 15 min, 1 h, 6 h and 24 h after lung recruitment. Heart rate, mean arterial pressure and central venous pressure were monitored before and 24 h after lung recruitment in the two groups. The optimal PEEP value and the corresponding volume at the end of recruitment were explored. The mechanical ventilation time, ICU hospitalization time, incidence of barotrauma, incidence of extrapulmonary organ failure, and 28-day mortality were recorded as well. Results After lung recruitment, the oxygenation index, Cdyn, mean airway pressure, and peak airway pressure in the ultrasound group were higher than those in the stretch group at 15 min, 1 h, 6 h, and 24 h after recruitment (all P<0.05). There was no significant difference in heart rate, mean arterial pressure or central venous pressure between the two groups at 24 h after lung recruitment (all P>0.05). After lung recruitment, the optimal PEEP value and the corresponding volume at the end of recruitment in the ultrasound group were higher than those in the distraction group (both P<0.05). The mechanical ventilation time and ICU stay in the ultrasound group were shorter than those in the stretch group (both P<0.05). There was no significant difference in the incidence of barotrauma, extrapulmonary organ failure rate or 28-day mortality between the two groups (all P>0.05). Conclusions Both bedside lung ultrasound-guided PEEP and lung stretch index-guided PEEP can improve oxygenation and respiratory compliance, and have no adverse effects on hemodynamics. Bedside lung ultrasound-guided PEEP can make the alveoli fully expand, which is more conducive to improving patients’ oxygenation and respiratory compliance, and the guiding value is higher than the lung stretch index.
ObjectiveTo discuss the risk factors of acute respiratory distress syndrome (ARDS) in patients with severe pneumonia.MethodsData of 80 patients with severe pneumonia admitted in our ICU were analyzed retrospectively, and they were divided into two groups according to development of ARDS, which was defined according to the Berlin new definition. The age, gender, weight, Acute Physiology and Chronic Health EvaluationⅡscore, lactate, PSI score and LIPS score, etc. were collected. Statistical significance results were evaluated by multivariate logistic regression analysis after univariate analysis. Receiver operating characteristic (ROC) curve was plotted to analyze the predictive value of the parameter for ARDS after severe pneumonia.ResultsForty patients with severe pneumonia progressed to ARDS, there were 4 moderate cases and 36 severe cases according to diagnostic criteria. Univariate analysis showed that procalcitonin (t=4.08, P<0.001), PSI score (t=10.67, P<0.001), LIPS score (t=5.14, P<0.001), shock (χ2=11.11, P<0.001), albumin level (t=3.34, P=0.001) were related to ARDS. Multivariate logistic regression analysis showed that LIPS [odds ratio (OR) 0.226, 95%CI=4.62-5.53, P=0.013] and PSI (OR=0.854, 95%CI=132.2-145.5, P=0.014) were independent risk factors for ARDS. The predictive value of LIPS and PSI in ARDS occurrence was significant. The area under ROC curve (AUC) of LIPS was 0.901, the cut-off value was 7.2, when LIPS ≥7.2, the sensitivity and specificity were both 85.0%. AUC of PSI was 0.947, the cut-off value was 150.5, when PSI score ≥150.5, the sensitivity and specificity were 87.5% and 90.0% respectively.ConclusionsPSI and LIPS are independent risk factors of ARDS in patients with severe pneumonia, which may be references for guiding clinicians to make an early diagnosis and treatment plan.
Objective To investigate the value of continuous blood purification (CBP)in early treatment of patients with ARDSexp (ARDS caused by extrapulmonary causes),especially in reducing inflammation mediators and extravascular lung water (EVLW).Methods According the hospital admission sequence,the patients with APACHEⅡ scores from 15 to 20 and PaO2/FiO2 from 100 to 200 were recruited.The ARDSexp patients were divide into an intervention group treated with CBP (Mode:CVVHDF,rate of displacement liquid and dialysate:1.5 L/h,rate of blood:100-200 mL/h,and the time of CBP:72 hours),and a control group without CBP treatment. The NICO and PICCO monitoring data and the survival rates were recorded and analyzed using the SPSS software. Results The mortality rate of the intervention group was lower than that of the control group (6.3% vs. 36.8%,P=0.032). In the 72 h monitoring dada of NICO and PICCO,the time of improving PCBF,Pm,Cdyn,VCO2,MValv,Pm,PIP,Raw,RSBI,Vd/Vt,and PaO2/FiO2 of the intervention group was severer than those in the control group,and the severety was also more than that of control group which was was significantly different at 72 h(Plt;0.05). In the PICCO data,the time of decreasing EVWL and PVPI was shorter than the control group,and the decreasing extent was more than the control group,with significant difference at 72 h. But the changes of Apm,CI,and CVP were not significant (Pgt;0.05). Conclusions In treatment of ARDSexp patients,CBP therapy can induce the PCBC and EVLW,improve pulmonary compliance and MValv,and reduce the mortality rate,while doesn’t influence heart function and the stability of circulation.
Objective To investigate the serumlevel of endothelin-1 ( ET-1) in patients with acute lung injury/acute respiratory distress syndrome ( ALI/ARDS) and its clinical significance. Methods Thirty-one ALI/ARDS patients received mechanical ventilation in ICUand 25 normal subjects were recruited in the study. The patients who died in two weeks fell in death group, and the patients who did not died in two weeks fell in survival group. The serum level of ET-1 measured by EIA method were compared between thepatients with different severity of lung injury [ evaluated by American-European Consensus Conference on ARDS ( AECC) criteria and lung injury score( LIS) ] , and between the patients with different prognosis ( death or survival ) . The correlation was analyzed between the level of ET-1 and clinical parameters.Results The ET-1 level was higher in the ALI/ARDS patients than that in the control subjects [ ( 6. 18 ±4. 48) ng/L vs. ( 2. 68 ±1. 34) ng/L, P lt;0. 05] . There was no significant difference in the patients with different severity [ ALI vs. ARDS, ( 5. 43 ±4. 39) ng/L vs. ( 7. 01 ±4. 51) ng/L, P gt; 0. 05; LIS≤2. 5 vs.LISgt;2. 5, ( 5. 93 ±5. 21) ng/L vs. ( 6. 68 ±2. 76) ng/L, P gt; 0. 05] . The ET-1 level in the death group continued to increase, and higher than that in the survival group on the 5th day [ ( 7. 96 ±3. 30) ng/L vs.( 4. 36 ±3. 29) ng/L, P lt; 0. 05] . The ET-1 level was positively correlated with SIRS, SAPSⅡ and APACHEⅡ ( r = 0. 359, 0. 369 and 0. 426, respectively, P lt; 0. 05 ) , and negatively correlated with PaO2 /FiO2 and AaDO2 ( r = - 0. 286 and - 0. 300, respectively, P lt;0. 05) . Conclusion The measurementof serum ET-1 can help to evaluate the severity and prognosis of ALI/ARDS patients.
ObjectiveTo investigate the clinical characteristics and contribution factors in severe coronavirus disease 2019 (COVID-19).MethodsThe clinical symptoms, laboratory findings, radiologic data, treatment strategies, and outcomes of 110 COVID-19 patients were retrospectively analyzed in these hospitals from Jan 20, 2020 to Feb 28, 2020. All patients were confirmed by fluorescence reverse transcription polymerase chain reaction. They were classified into a non-severe group and a severe group based on their symptoms, laboratory and radiologic findings. All patients were given antivirus, oxygen therapy, and support treatments. The severe patients received high-flow oxygen therapy, non-invasive mechanical ventilation, invasive mechanical ventilation or extracorporeal membrane oxygenation. The outcomes of patients were followed up until March 15, 2020. Contribution factors of severe patients were summarized from these clinical data.ResultsThe median age was 50 years old, including 66 males (60.0%) and 44 females (40.0%). Among them, 45 cases (40.9%) had underlying diseases, and 108 cases (98.2%) had different degrees of fever. The common clinical manifestations were cough (80.0%, 88/110), expectoration (33.6%, 37/110), fatigue (50.0%, 55/110), and chest tightness (41.8%, 46/110). Based on classification criteria, 78 (70.9%) non-severe patients and 32 (29.1%) severe patients were identified. Significant difference of the following parameters was found between two groups (P<0.05): age was 47 (45, 50) years vs. 55 (50, 59) years (Z=–2.493); proportion of patients with underlying diseases was 27 (34.6%) vs. 18 (56.3%) (χ2=4.393); lymphocyte count was 1.2 (0.9, 1.5)×109/L vs. 0.6 (0.4, 0.7)×109/L (Z=–7.26); C reactive protein (CRP) was 16.2 (6.5, 24.0) mg/L vs. 45.3 (21.8, 69.4) mg/L (Z=–4.894); prothrombin time (PT) was 15 (12, 19) seconds vs. 18 (17, 19) seconds (Z=–2.532); D-dimer was 0.67 (0.51, 0.82) mg/L vs. 0.98 (0.80, 1.57) mg/L (Z=–5.06); erythrocyte sedimentation rate (ESR) was 38.0 (20.8, 59.3) mm/1 h vs. 75.5 (39.8, 96.8) mm/1 h (Z=–3.851); lactate dehydrogenase (LDH) was 218.0 (175.0, 252.3) U/L vs. 325.0 (276.5, 413.5) U/L (Z=–5.539); neutrophil count was 3.1 (2.1, 4.5)×109/L vs. 5.5 (3.7, 9.1)×109/L (Z=–4.077). Multivariable logistic analysis showed that there was positive correlation in elevated LDH, CRP, PT, and neutrophil count with the severity of the disease. Currently, 107 patients were discharged and 3 patients died. Total mortality was 2.7%.ConclusionsOld age, underlying diseases, low lymphocyte count, elevated CPR, high D-dimer and ESR are relevant to the severity of COVID-19. LDH, CPR, PT and neutrophil count are independent risk factors for the prognosis of COVID-19.