west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "生物相容性" 78 results
  • EXPERIMENTAL STUDY OF NOVEL INJECTABLE NUCLEUS PULPOSUS PROSTHESES IMPLANT

    To explore the histological and the hematological change of rabbits after implanting novel injectable artificial nucleus prostheses, and to evaluate the biological safety. Methods In accordance with Biological Evaluation of Medical Devices, materials of polyurethane, sil icone rubber and macromolecular polyethylene for medical use were made into short column 1 cm in length and 0.3 cm in diameter. Forty-eight SPF New Zealand white rabbits weighing 2.5-3.0 kg were used, and cavity 1 cm in depth was made in the area 2 cm away from the spinal midl ine by separating muscle.Then according to different material being implanted, the rabbits were divided into 3 groups (n=16): Group A, polyurethane; group B, sil icone rubber; group C, macromolecular polyethylene for medical use as negative control. General condition of the rabbits was observed after operation. Gross and histology observation were conducted 1, 4, 12 and 26 weeks after operation. Blood routine, biochemical function and electrolyte assays were performed 26 weeks after operation to observe pathological changes of organs. Meanwhile, physicochemical properties of the materials were detected, and the material in the same batch was used as negative control. Results All rabbits survived until the end of experiment, and all wounds healed by first intention. In each group, red swollen muscles were observed 1 week after operation and disappeared 4 weeks after operation, connective tissue around the implanted materials occurred 12 and 26 weeks after operation. At 26 weeks after operation, there were no significant differences among three groups in blood routine, biochemical function and electrolyte assays (P gt; 0.05). Organs had smooth surface without ulceration, ecchymosis, obvious swell ing, hyperemia or bleeding, and nodules. There were no significant differences among three groups in percentage weight of each organ (P gt; 0.05). Histology observation: granulation tissue prol iferation and inflammatory cell infiltration were observed in each group 1 week after operation, fibrous capsule formation around the materials and the disappearance of inflammatory cell infiltration were evident 4 weeks after operation, cyst wall grewover time and achieved stabil ity 12 weeks after operation. The inflammatory response and the fiber cyst cavity of groups A and B met the standard of GB/T 16175 and were in l ine with group C. No specific pathological changes were discovered in the organs 26 weeks after operation. For group A, no significant difference was evident between before and after material implantation in terms of weight average molecular weight, number average molecular weight, tensile strength at break and elongation at break (P gt; 0.05). For group B, no significant difference was evident between before and after material implantation in shore hardness (P gt; 0.05). Conclusion Novel injectable nucleus pulposus prostheses do not damage local tissue and function of organs, but provide good biocompatibil ity and biological safety.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • STUDY ON BIOCOMPATIBILITY OF SKIN REPRODUCTIVE MEMBRANE

    OBJECTIVE To study the biocompatibility of skin reproductive membrane. METHODS According to ISO’s standards, the extractions of the skin reproductive membrane were prepared, and the acute systematic toxicity test, primary skin irritant test, cytotoxicity test, gene expression of type I collagen and fibronectin were detected to evaluate the biocompatibility of skin reproductive membrane. RESULTS All of those tests showed negative results. CONCLUSION The skin reproductive membrane has excellent biocompatibility in the level of the systematic, cellular and molecular biology.

    Release date:2016-09-01 10:25 Export PDF Favorites Scan
  • THE STUDY ON BIOCOMPATIBILITY OF DIAMONDLIKE CARBON COATED NICKEL-TITANIUM SHAPE MEMORY ALLOY WITH OSTEOBLASTS CULTURED IN VITRO

    Objective To investigate the biocompatibility of diamond-like carbon(DLC) coated NickelTitanium shape memory alloy with osteoblasts cultured invitro. Methods Rabbit’s osteoblasts were incubated with DLCcoated NickelTitanium shape memory alloy disks and uncoated ones of equal size for 5 days. The control group(without shape memory alloy in culture media) was performed simultaneously. The cultured cells were counted and graphed. The samples from culture media were collected and the concentrations of alkaline phosphatase (ALP) and nickel(Ni2+) were measured from the 1st to 5th day respectively. Results The proliferation of osteoblasts and the concentration of ALP in both DLC-coated group and control gruop was higher than uncoated group. The proliferation of osteoblasts on the 3rd, 4th, and 5th day in both DLC-coatedgroup and control group was significantly higher than that in the uncoated group(P<0.05). The concentration of ALP in DLC-coated group on the 2nd, 3rd, and 5th day and in the control group on the 3rd, 4th, and 5th day was significantly higher than that in the uncoated group(P<0.05). The concentration of Ni2+ on the 3rd, 4th, and 5th day was significantly lower than that in the uncoated group(P<0.05). Conclusion DLC- coated NickelTitanium shape memory alloys appears to have better biocompatibility with osteoblast cultured in vitro compared to uncoated ones.

    Release date:2016-09-01 09:24 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON ACELLULAR BOVINE PERICARDIUM GUIDED BONE REGENERATION MATERIAL

    Objective To choose the best procedure on preparation of acellularbovine pericardium (ABP) guided bone regeneration (GBR) material. Methods The BP was decellularized with 0.25% Trypsin+0.5% Triton X-100. The acellular bovine pericardiums (ABPs) were treated with phosphatebuffered saline(PBS) (group A), 95% glycerol (group B), EDAC (group C), and EDAC and 95% glycerol (group D) respectively. The treated ABPs were implanted subcutaneously in the back of SD rats respectively at random and no material was implanted as control. Seven rats were sacrificed at 2 weeks, twelve at 4 weeks, twelve at 8 weeks, seven at 16 weeks. Local reaction was studied grossly. The amount of antigen presenting cell (APC) and the percentage of ABP degeneration were reckoned by images analysis system. Results The ABPs were replaced by fibroblasts completely in group A at 8 weeks, in group C at 16 weeks, but only less than 50% till 16 weeks in groups B and D. In all groups, the depth of surrounding fibres attenuated timedependingly. The APC amount of the groups B and D was higher than that of the control group, and the ABP of the groups B and D degraded partly at 16 weeks. Conclusion The ABP treated with EDAC can be replaced by the surrounding tissues and has good biocompatibility.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • NEW POROUS β-TRICALCIUM PHOSPHATE AS SCAFFOLD FOR BONE TISSUE ENGINEERING

    Objective To investigate the feasibility of a new kind of porous β tricalcium phosphate (β-TCP) as a scaffold for the bone tissue engineering Methods The inverted phase contrast microscope was used to observe the growth of the marrow mesenchymal stem cells (MSCs) in the experimentalgroup and the control group at 10 days.In the experimental group, the MSCs were cultured with β-TCP(3 mm×3 mm×3 mm) in the 24-hole cultivation board, and in the control to control group, only MSCs were cultivated. The scanning electron microscope was used to observe growth of MSCs at 6 days. Cultivated with β-TCP at 3, 6, 9, 12 days, the MTT assay was used to judge the biocompatibility. The cytotoxicity was analyzed with the method that used the different density(100%, 50%, 10%, 1%,0%) leaching liquor gained from β-TCP to raise MSCs. MSCs were induced into the osteoblasts and were mixed with β-TCP, and the composite was used to repair a large radius bone defect in the rabbit. The specimens were made at 2,6,12 weeks. The histology imageology, and the radionuclide bone scan were used to analyze the bone formation. Results Some MSCs had a good adherence 4 hours after MSCs were inoculated and had a complete adherence at 12 hours. The cells were shaped like polyangle, spindle or converge monolayer after 8-10 days. The cells in the two groups had no difference. The cell adhesion was good, when observed by the inverted phase contrast microscope and the scanning electron microscope at 6 days. MTT showed that the absorbance (A)was not statistically different between the experimental group and the control group (P>0.05); the different density leaching liquor had no cytotoxicity at the different time points. Histology, X-ray, and CT tomograph showed that itcould repair the large radius bone defect in the rabbit and its in vivo degradationrate was the same as the bone formation rate. Conclusion The new porous β-TCP has a unique three dimensional (3D) stereochemical structure and superordinary physicochemical property, and so it is a good scaffold for the bone tissue engineering.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7

    ObjectiveTo prepare of a novel functional self-assembling peptide nanofiber hydrogel scaffold RADKPS designed with linking the short functional motif of bone morphogenetic protein 7 (BMP-7) and to evaluate its biocompatibility so as to provide the experimental basis for in vivo studies on regeneration of degenerated nucleus pulposus tissue. MethodA functional self-assembling peptide RADA-KPSS was designed by linking the short functional motif of BMP-7 to the self-assembling peptide RADA16-I. And the novel functional self-assembling peptide RADKPS was finally prepared by isometric mixing RADA16-I with RADA-KPSS. The structure characteristic of the functional self-assembling peptide nanofiber hydrogel scaffold RADKPS was evaluated by general observation and atomic force microscopy. Bone marrow mesenchymal stem cells (BMSCs) were isolated from 3-month-old New Zealand white rabbits and cultured. After the 3rd generation BMSCs were seeded on the peptide nanofiber hydrogel scaffold RADKPS for 7 days, the cellular compatibility of RADKPS was evaluated through scanning electron microscopy assay, cellular fluorescein diacetate/propidium iodide staining, and MTT assay. 1%RADKPS was injected into isolated intervertebral disc organs from 6-month-old New Zealand white rabbits, then the organs were cultured and the cellular activity of the intervertebral disc organs was observed. The blood compatibility of RADKPS was evaluated with hemolytic assay. After RADKPS was implanted into subcutaneous part of Kunming mice (aged 6-8 weeks) for 28 days, general observation and HE staining were carried out to evaluate the tissue compatibility. ResultsThe functional self-assembling peptide solution RADKPS presented a homogeneous transparent hydrogel-like. Atomic force microscopy revealed that the RADKPS could self-assemble into three-dimensional nanofiber hydrogel scaffolds; the fibre diameter was (25.68±4.62) nm, and the fibre length was (512.42±32.22) nm. After BMSCs cultured on RADKPS for 7 days, scanning electron microscopy showed that BMSCs adhered to the scaffolds. And cell viability was maintained over 90%. MTT assay revealed that RADKPS of 0.1%, 0.05%, and 0.025% could increase the proliferation of BMSCs. The result of hemolytic assay revealed that the hemolysis rates of the RADKPS solutions with different concentrations were less than 5%, indicating that it met the requirement of hemolytic assay standard for medical biomaterials. After subcutaneous implantation, no vesicle, erythema, and eschar formation around injection site were observed. Meanwhile, HE staining showed inflammatory cells infiltration (lymphocytes), substitution of hydrogel scaffold by fibrous tissue, and good tissue compatibility. ConclusionsThe novel functional self-assembling peptide nanofiber hydrogel scaffold RADKPS has good biocompatibility and biological reliability, which would be suitable for tissue engineering repair and regeneration of nucleus pulposus tissue.

    Release date: Export PDF Favorites Scan
  • INFLUENCE OF DOSAGE ON CELL BIOCOMPATIBILITY OF HYDROXYAPATITE/TRICALCIUM PHOSPHATE

    Objective To investigate the influence of different dose levels of hydroxyapatite/tricalcium phosphate (HA/TCP) on the proliferation and alkalinephosphatase (ALP) activity of rabbit osteoblasts. Methods Three different doselevels of HA/TCP (10%, 40%, 70%) were co-cultivated with rabbit osteoblasts respectively. The proliferation and ALP expression capacity of osteoblasts were examined with MTT method and enzyme histochemistry once every 24 hours until 5 days. Three control groups of other materials were treated and examined in the sameway: rabbit osteoblasts as normal control; polyvinylchloride as positive control; titanium alloy as negative control. Results There was remarkable timeeffect relationship in the proliferation of osteoblasts. Ten percent HA/TCP did not affect osteoblasts growth while 40% HA/TCP could slow the cell growth rate down though time-effect relationship still existed. The proliferation of osteoblasts stagnated when co-cultivated with 70% HA/TCP. On the other hand, 10% HA/TCP could cause reversible damage on ALP activity of osteoblasts, whereas when the dose was40%, and the cultivation lasted 6 days the damage was irreversible. Three different dose levels of titanium alloy (10%, 40%, 70%) had no effect on the proliferation or ALP activity of osteoblasts. Conclusion Dosage is an important factor affecting the biocompatibility evaluation of biomaterial. It suggests that dose choosing should be more specified upon each individual biomaterial. It also indicates that ALP may be a good supplementary index of the cell compatibility of material.

    Release date: Export PDF Favorites Scan
  • Research progress on the technique and materials for three-dimensional bio-printing

    Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.

    Release date:2017-04-13 10:03 Export PDF Favorites Scan
  • HISTOCOMPATIBILITY OF POROUS HYDROXYAPATITE COATING NITI SHAPE MEMORY ALLOY

    Objective To evaluate the histocompatibil ity of porous hydroxyapatite (HAP) coating NiTi shape memory alloy and to provide a theoretical basis for its cl inical appl ication in bone defect repair. Methods Twenty-four Chinchilla rabbits weighing 2.0-2.5 kg were randomized into experimental group and control group (n=12). HAP coating NiTi shape memory alloy was implanted into the distal part of left femur of 12 rabbits in the experimental group, while holes without alloy implantation were performed on the control group. At 7, 14, 28 and 56 days after implantation, the animals werekilled (3 rabbits in each group at a time). Gross observation, histology observation, BMP-2 immunohistochemistry observation and image grey scale analysis were performed. And the histology observation was evaluated by GB/T16886.6-1997 in terms of inflammation, capsule wall of fibrous tissue, materials degradation and the response of peripheral tissue. Results All of the animals survived until being killed. The implants reached a peak embedded in bone tissue wholly, without loosening and bone absorption. The inflammatory cell infiltration and fibrous hyperplasia were at 7 days after implantation, with the formation of cyst wall of fibrous tissue and the implant wrapped by the cyst wall. The response of connective tissue proliferation was still obvious in partial samples of experimental group at 56 days after implantation, which was wrose than the control group but consistent with the in vivo implantation standard of GB/T16886.6-1997. Immunohistochemistry observation displayed the endogenous BMP-2 were in the cytoplasm of MSCs and osteoblast. The result of image analysis showed the expression of BMP-2 were staged in line with the repair of bone defect, two groups witnessed the peak expression of the BMP-2 at 14 days after implantation. There wereno significant differences among different time points in the staining gray scale of BMP-2 (P gt; 0.05). Conclusion HAP coating NiTi shape memory alloy, as a biomedical material, has excellent histocompatibility with bone.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • BIOCOMPATIBILITY OF POLY-LACTIDE-CO-GLYCOLIDE /COLLAGEN TYPE I SCAFFOLD WITH RAT VAGINAL EPITHELIAL CELLS

    ObjectiveTo explore the biocompatibility of the poly-lactide-co-glycolide (PLGA)/collagen type I scaffold with rat vaginal epithelial cells, and the feasibility of using PLGA/collagen type I as scaffold to reconstruct vagina by the tissue engineering. MethodsPLGA/collagen type I scaffold was prepared with PLGA covered polylysine and collagen type I. The vaginal epithelial cells of Sprague Dawley rat of 10-12 weeks old were cultured by enzyme digestion method. The vaginal epithelial cells of passage 2 were cultured in the leaching liquor of scaffold for 48 hours to detect its cytotoxicity by MTT. The vaginal epithelial cells were inoculated on the PLGA/collagen type I scaffold (experimental group) and PLGA scaffold (control group) to calculate the cell adhesion rate. Epithelial cells-scaffold complexes were implanted subcutaneously on the rat back. At 2, 4, and 8 weeks after implantation, the epithelial cells-scaffold complexes were harvested to observe the cell growth by HE staining and immunohistochemical analysis. The epithelial cells-scaffold complexes were transplanted to reconstruct vagina in 6 rats with vaginal defect. After 3 and 6 months, the vaginal length was measured and the appearance was observed. The neovagina tissues were harvested for histological evaluation after 6 months. ResultsThe epithelial cells grew and proliferated well in the leaching liquor of PLGA/collagen type I scaffold, and the cytotoxicity was at grade 1. The cell adhesion rate on the PLGA/collagen type I scaffold was 71.8%±9.2%, which significantly higher than that on the PLGA scaffold (63.4%±5.7%) (t=2.195, P=0.005). The epithelial cells could grow and adhere to the PLGA/collagen type I scaffolds. At 2 weeks after implanted subcutaneously, the epithelial cells grew and proliferated in the pores of scaffolds, and the fibroblasts were observed. At 4 weeks, 1-3 layers epithelium formed on the surface of scaffold. At 8 weeks, the epithelial cells increased and arranged regularly, which formed the membrane-like layer on the scaffold. The keratin expression of the epithelium was positive. At 3 months after transplantation in situ, the vaginal mucosa showed pink and lustrous epithelialization, and the majority of scaffold degraded. After 6 months, the neovagina length was 1.2 cm, without obvious stenosis; the vaginal mucosa had similar appearance and epithelial layer to normal vagina, but it had less duplicature; there were nail-like processes in the basal layer, but the number was less than that of normal vagina. The immunohistochemistry staining for keratin was positive. ConclusionThe PLGA/collagen type I scaffolds have good cytocompatibility with the epithelial cells, and can be used as the biodegradable polymer scaffold of the vaginal tissue engineering.

    Release date: Export PDF Favorites Scan
8 pages Previous 1 2 3 ... 8 Next

Format

Content