Objective To prepare and study the biocompatibil ity of selectively decellular xenoskin which has the character of the lower antigen, continuous epidermis, and the dermal matrix without any cellular components. Methods The porcine skin was treated with glutaraldehyde solution, trypsin, and detergent solution TritonX-100 to prepare the selectivelydecellular xenoskin. The cytotoxicity was tested according to GB/T16886.5-2003 biological evaluation of medical devices for in vitro cytotoxicity, and the levels of cytotoxicity were evaluated with the United States Pharmacopeia. Subdermal implantation was tested according to GB/T16886.6-1997 biological evaluation of medical devices for local effects after implantation. Seventytwo mature Wistar rats were randomly assigned to groups A, B, and C (n=24). Three kinds of materials were implanted into subcutaneous of rats back. Selectively decellular xenoskin was transplanted into group A, fresh porcine skin was transplanted into group B, and allogeneic skin was transplanted into group C. The samples were collected to make the observation of gross and histology after 1, 2, 4, 8, 12, and 16 weeks. Results The cytotoxicity was proved to be first grade by biocompatibil ity test. The gross and histological observation of subdermal implantation: after implantation, the most severe inflammatory reactions were seen in group B which dispersion was very slow. Inflammatory reactions in groups A and C alleviated gradually. In groups A and C, there was an increased collagen fiber density and angiogenesis at late stage; the transplanted skin was gradually degraded and absorbed. In group B, no obvious degradation and absorption were observed. Conclusion Selectively decellular xenoskin, prepared with glutaraldehyde solution, trypsin, and detergent solution, possesses characteristics of integral skin structure andexcellent biocompatibil ity, so it can be used as a new type substitute to repair the burn wound.
Objective To investigate the feasibility of a new kind of porous β tricalcium phosphate (β-TCP) as a scaffold for the bone tissue engineering Methods The inverted phase contrast microscope was used to observe the growth of the marrow mesenchymal stem cells (MSCs) in the experimentalgroup and the control group at 10 days.In the experimental group, the MSCs were cultured with β-TCP(3 mm×3 mm×3 mm) in the 24-hole cultivation board, and in the control to control group, only MSCs were cultivated. The scanning electron microscope was used to observe growth of MSCs at 6 days. Cultivated with β-TCP at 3, 6, 9, 12 days, the MTT assay was used to judge the biocompatibility. The cytotoxicity was analyzed with the method that used the different density(100%, 50%, 10%, 1%,0%) leaching liquor gained from β-TCP to raise MSCs. MSCs were induced into the osteoblasts and were mixed with β-TCP, and the composite was used to repair a large radius bone defect in the rabbit. The specimens were made at 2,6,12 weeks. The histology imageology, and the radionuclide bone scan were used to analyze the bone formation. Results Some MSCs had a good adherence 4 hours after MSCs were inoculated and had a complete adherence at 12 hours. The cells were shaped like polyangle, spindle or converge monolayer after 8-10 days. The cells in the two groups had no difference. The cell adhesion was good, when observed by the inverted phase contrast microscope and the scanning electron microscope at 6 days. MTT showed that the absorbance (A)was not statistically different between the experimental group and the control group (P>0.05); the different density leaching liquor had no cytotoxicity at the different time points. Histology, X-ray, and CT tomograph showed that itcould repair the large radius bone defect in the rabbit and its in vivo degradationrate was the same as the bone formation rate. Conclusion The new porous β-TCP has a unique three dimensional (3D) stereochemical structure and superordinary physicochemical property, and so it is a good scaffold for the bone tissue engineering.
Objective To explore the method of preparing the electrospinning of synthesized triblock copolymers of ε-caprolactone and L-lactide (PCLA) for the biodegradable vascular tissue engineering scaffold and to investigateits biocompatibil ity in vitro. Methods The biodegradable vascular tissue engineering scaffold was made by the electrospinning process of PCLA. A series of biocompatibil ity tests were performed. Cytotoxicity test: the L929 cells were cultured in 96-wellflat-bottomed plates with extraction media of PCLA in the experimental group and with the complete DMEM in control group, and MTT method was used to detect absorbance (A) value (570 nm) every day after culture. Acute general toxicity test: the extraction media and sal ine were injected into the mice’s abdominal cavity of experimental and control groups, respectively, and the toxicity effects on the mice were observed within 72 hours. Hemolysis test: anticoagulated blood of rabbit was added into the extracting solution, sal ine, and distilled water in 3 groups, and MTT method was used to detect A value in 3 groups. Cell attachment test: the L929 cells were seeded on the PCLA material and scanning electron microscope (SEM) observation was performed 4 hours and 3 days after culture. Subcutaneous implantation test: the PCLA material was implanted subcutaneously in rats and the histology observation was performed at 1 and 8 weeks. Results Scaffolds had the characteristics of white color, uniform texture, good elasticity, and tenacity. The SEM showed that the PCLA ultrafine fibers had a smooth surface and proper porosity; the fiber diameter was 1-5 μm and the pore diameter was in the range of 10-30 μm. MTT detection suggested that there was no significant difference in A value among 3 groups every day after culturing (P gt; 0.05). The mice in 2 groups were in good physical condition and had no respiratory depression, paralysis, convulsion, and death. The hemolysis rate was 1.18% and was lower than the normal level (5%). The SEM showed a large number of attached L929 cells were visible on the surface of the PCLA material at 4 hours after implantation and the cells grew well after 3 days. The PCLA material was infiltrated by the inflammatory cells after 1 week. The inflammatory cells reduced significantly and the fiber began abruption after 8 weeks. Conclusion The biodegradable vascular tissue engineering scaffold material made by the electrospinning process of PCLA has good microstructure without cytotoxicity and has good biocompatibil ity. It can be used as an ideal scaffold for vascular tissue engineering.
Objective To evaluate the histocompatibil ity of porous hydroxyapatite (HAP) coating NiTi shape memory alloy and to provide a theoretical basis for its cl inical appl ication in bone defect repair. Methods Twenty-four Chinchilla rabbits weighing 2.0-2.5 kg were randomized into experimental group and control group (n=12). HAP coating NiTi shape memory alloy was implanted into the distal part of left femur of 12 rabbits in the experimental group, while holes without alloy implantation were performed on the control group. At 7, 14, 28 and 56 days after implantation, the animals werekilled (3 rabbits in each group at a time). Gross observation, histology observation, BMP-2 immunohistochemistry observation and image grey scale analysis were performed. And the histology observation was evaluated by GB/T16886.6-1997 in terms of inflammation, capsule wall of fibrous tissue, materials degradation and the response of peripheral tissue. Results All of the animals survived until being killed. The implants reached a peak embedded in bone tissue wholly, without loosening and bone absorption. The inflammatory cell infiltration and fibrous hyperplasia were at 7 days after implantation, with the formation of cyst wall of fibrous tissue and the implant wrapped by the cyst wall. The response of connective tissue proliferation was still obvious in partial samples of experimental group at 56 days after implantation, which was wrose than the control group but consistent with the in vivo implantation standard of GB/T16886.6-1997. Immunohistochemistry observation displayed the endogenous BMP-2 were in the cytoplasm of MSCs and osteoblast. The result of image analysis showed the expression of BMP-2 were staged in line with the repair of bone defect, two groups witnessed the peak expression of the BMP-2 at 14 days after implantation. There wereno significant differences among different time points in the staining gray scale of BMP-2 (P gt; 0.05). Conclusion HAP coating NiTi shape memory alloy, as a biomedical material, has excellent histocompatibility with bone.
Objective To investigate the biocompatibility of p(3HB-co-3HH) and marrow mesenchymal stell cells (MSCs).Methods MSCs were inoculated to p(3HB-co-3HH), and then cultured for 2-4 weeks in vitro and embedded for 2 weeks in vivo. The growth, proliferation, morphology and phenotype properties of MSCs were observed by use of phase contrast microscope, electron microscope, HE staining and staining of type Ⅰ collagen. Results p(3HB-co-3HH) hadgood compatibility. The inoculated MSCs could be well-distributed, attached well and obtain the phenotype of MSCs in p(3HB-co-3HH). After osteogenic inducer were added, MSCs differentiated to osteoblasts and secreted matrix. Type Ⅰ collagen was stained positively by immunohistochemical techenique. Conclusion The above results demonstrate that there is satisfactory biocompatibility betweenp(3HB-co-3HH) and MSCs.
ObjectiveTo evaluate the effect of a novel micro-arc oxidation (MAO) coated magnesium-zinc-calcium (Mg-Zn-Ca) alloy scaffold/autologous bone particles to repair critical size bone defect (CSD) in rabbit and explore the novel scaffold in vivo corrosion resistance and biocompatibility.MethodsSeventy-two New Zealand white rabbits were randomly divided into 3 groups (n=24), group A was uncoated Mg-Zn-Ca alloy scaffold group, group B was 10 μm MAO coated Mg-Zn-Ca alloy scaffold group, and group C was control group with only autologous bone graft. The animals were operated to obtain bilateral ulnar CSD (15 mm in length) models. The bone fragment was removed and minced into small particles and were filled into the scaffolds of groups A and B. Then, the scaffolds or autologous bone particles were replanted into the defects. The animals were sacrificed at 2, 4, 8, and 12 weeks after surgery (6 rabbits each group). The local subcutaneous pneumatosis was observed and recorded. The ulna defect healing was evaluated by X-ray image and Van Gieson staining. The X-ray images were assessed and scored by Lane-Sandhu criteria. The percentage of the lost volume of the scaffold (ΔV) and corrosion rate (CR) were calculated by the Micro-CT. The Mg2+ and Ca2+ concentrations were monitored during experiment and the rabbit liver, brain, kidney, and spleen were obtained to process HE staining at 12 weeks after surgery.ResultsThe local subcutaneous pneumatosis in group B was less than that in group A at 2, 4, and 8 weeks after surgery, showing significant differences between 2 groups at 2 and 4 weeks after surgery (P<0.05); and the local subcutaneous pneumatosis was significantly higher in group B than that in group A at 12 weeks after surgery (P<0.05). The X-ray result showed that the score of group C was significantly higher than those of groups A and B at 4 and 8 weeks after surgery (P<0.05), and the score of group B was significantly higher than that of group A at 8 weeks (P<0.05). At 12 weeks after surgery, the scores of groups B and C were significantly higher than that of group A (P<0.05). Meanwhile, the renew bone moulding of group B was better than that in group A at 12 weeks after surgery. Micro-CT showed that ΔV and CR in group B were significantly lower than those in group A (P<0.05). Van Gieson staining showed that group B had better biocompatibility and osteanagenesis than group A. The Mg2+ and Ca2+ concentrations in serum showed no significant difference between groups during experiments (P>0.05). And there was no obvious pathological changes in the liver, brain, kidney, and spleen of the 3 groups with HE staining at 12 weeks.ConclusionThe MAO coated Mg-Zn-Ca alloy scaffold/autologous bone particles could be used to repair CSD effectively. At the same time, 10 μm MAO coating can effectively improve the osteanagenesis, corrosion resistance, and biocompatibility of Mg-Zn-Ca alloy scaffold.
This study aims to compare two kinds of modified poly (lactic acid) (PLA) materials:PLA-chitosan (PLA-CTS) and PLA-poly (glycolic acid) (PLA-PGA). PLA-CTS and PLA-PGA scaffolds were prepared and observed under electron microscope. The scaffold porosity was calculated and the pH of the degradation solution was measured. Then rat olfactory ensheathing cells (OECs) were cultivated, and mixed cultured respectively with two scaffolds as two groups. The proliferation, adhesion rate and growth condition of the OECs were observed and compared between the two groups. Results showed that both the prepared PLA-CTS and PLA-PGA scaffolds were three-dimensional porous structure and the porosity of PLA-CTS was 91%, while that of PLA-PGA was 87%. The pH of degradation solution decreased gradually, of which PLA-PGA fell faster than PLA-CTS. After added to the two scaffolds, most OECs could grow well, and there were no significant differences between the two groups on MTT test and nuclei number determined by fluorescent microscope. However, the cell adhesion rate of PLA-CTS group was significantly higher than that of PLA-PGA. It can be concluded that compared with PLA-PGA, PLA-CTS might be a better choice as OECs scaffold.
Objective To evaluate the biocompatibility and safety of a novel orthopedics materials-graded zirconia(ZrO2)hydroxyapatite(HA) composite biomaterials. Methods First, ultrafine powers of ZrO2 and HA powder were prepared by chemical precipitation method, then graded ZrO2-HA composite was synthesized by dry-laying and sintering method. After the physiological saline and culture medium extracts of the composite were prepared, four experiments were conducted as follows:① The mouse acute toxic test consists of 2 groups(n=10). The extracts were intravenously injected to mice in the first group, and physiological saline to mice in the second group. The dose was 50 g/kg. Their toxicity manifestation, morality and the change of weight were recorded.② The standard curve of proliferation and metabolism of L929 cells was established. ③ The cytotoxinic test consists of 3 groups: materials group (extracts of the materials), positive control group (culture fluid with 0.64% phenol), and negative control group (RPMI-1640 culture fluid). Each of three was cultured with cell suspension, and then the morphology of the cells was observed, the relative proliferation rate (RGR) was calculated, and the toxicity was classified. ④ In vitrohemolytic test was divided into 3 groups: extracts, sterile distilled water (positive control) and 0.9% physiological saline. In each of three, 0.2 ml anticoagulant diluted fresh rabbit blood was added. The percentage of hemolysis was tested. ⑤ The muscle and implantation test were divided into 4 groups(n=3). The composite biomaterials were implanted into pygal muscleson either side and lateral condyles of femurs. After surgery, the rats of four groups were sacrificed at 12 and 24 weeks respectively.Tissue slice and scanning electronic microscopy were performed. Results General acute toxic test: no mouse died within 3 weeks; no toxicity symptom or adverse effects were shown within 3 days. The weight of materials group increased by 3.57±0.49 g, and the control group by 3.62±0.61 g, showing no statistically significant difference(Ρgt;0.05).The standard curve of L929 cell perliferation and metabolism showed that their existed a positive correlation between the number of L929 cells and the perliferation. ③ Cytotoxinic test: cytosomes in the positive control group diminished and appeared round, there were pyknotic nucleus, the attached cells agglomerated; the toxicity was level Ⅳ. The morphology of cells in materials groupand negative control group was normal, and the number of them increased; the toxicity was level Ⅰand level 0, respectively. The MTT color experiments showed that positive control group was significantly lower than materials group and negative control group, showing statistically significant difference (Plt;0.01); there was no statistically significant difference between materials group and negative group.④ Hemolytic test: in vitrohemolytic rate of negative control group was0, of positive control group was 100%, and of materials group was 1.66%, which accords with the standard that hemolytic rate should be lower than 5% specified in ISO. ⑤ Implant test:No apparent rejection reaction took place after the composite was implanted; the composite bonded with the bones of the receptors firmly, which had good bonedinduced effect. Conclusion Graded ZrO2-HA composite bioceramic has good biocompatibility and is suitable for orthopedic biomaterials.
Biomedical metal materials have always been a major biomedical material with a large and wide range of clinical use due to their excellent properties such as high strength and toughness, fatigue resistance, easy forming, and corrosion resistance. They are also the preferred implant material for hard tissues (bones and teeth that need to withstand higher loads) and interventional stents. And nano-medical metal materials have better corrosion resistance and biocompatibility. This article focuses on the changes and improvements in the properties of several typical medical metal materials surfaces after nanocrystallization, and discusses the current problems and development prospects of nano-medical metal materials.
Objective To evaluate the biocompatibility and in vivo degradation of novel chest wall prosthesis materials and provide some data for their clinical application. MethodsAccording to the standard for the biological evaluation of the medical devices, several tests were performed to evaluate the tissue toxic effects induced by polydioxanone (Group A), chitosan (Group B), and hydroxyapitite/collagen (Group C),which were tested as component materials of the chest wall prosthesis. In the hemolysis test, 0.2 ml of the anticoagulant rabbit blood was added to the component materials and the normal saline (negative control) and to the distilled water(positive control). Five samples were made in each group. Absorbency was measured and the hemolysis rate was determined. In the acute systemic toxicity test, 20 mice were randomly divided into 4 groups (Groups A, B and C, and the normal saline group, n=5). The leaching liquid (50 ml/kg) was injected through the caudal vein, which was observed at 24, 48 and 72 hours. In the pyrogen test, 12 rabbits were randomly divided into 4 groups (Groups A, B, C and the normal saline group, n=3) the leaching liquid(10 ml/kg) was injected through the ear vein,and the body temperature was recorded within 3 hours. In the in vivo degradable test, the component materials (10 mm×10 mm) were implanted in 12 rabbits at 2, 4, 8, 12, 16 and 24 weeks, respectively, after operation. Two rabbitswere sacrificed for the macroscopic and the microscopic examinations. Results The chest wall component materials had no hemolytic reaction, no acute systemic toxicity, and no pyrogen reaction. The results demonstrated that the implanted materials had only a mild inflammatory reaction during the early days of the grafting, which subsided gradually. There was no tissue denaturation, necrosis or pathological hyperplasia when the prosthesis materials were degraded. Conclusion The degradable materials of the chest wall prosthesis have a good biocompatibility and agreat biological safety though their surgical application still requires a further clinical research.