west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "电刺激" 75 results
  • ADVANCES OF FUNCTIONAL ELECTRICAL STIMULATION IN TREATMENT OF PERIPHERAL NERVE INJURIES

    Objective To review the advances of functional electrical stimulation(FES) in treatment of peripheral nerve injuries. Methods By index of recent literature, the measures of stimulation, the mechanisms of FES and unsolved problems were evaluated and analyzed. Results Great advances have been made in the treatment of peripheral nerve injuries. It can not only enhance the regeneration of injured peripheral nerve, but also prevent muscular atrophy. Conclusion FES is an effective treatment for peripheral nerve injuries.

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • EFFECT OF ELECTRIC STIMULATION ON DENERVATED SKELETAL MUSCLE ATROPHY

    OBJECTIVE: To study the influence of the electric stimulation of denervated muscle atrophy. METHODS: Sixteen SD rats were made the model of denervated skeletal muscle in two lower limbs by cutting off the sciatic nerve and femoral nerve. The right gastrocnemius muscle was stimulated with JNR-II nerve amp; muscle recovery instrument by skin as the experimental side and the left was not treated as the control side. The muscle histology, ultrastructure, fibrillation potential amplitude, Na(+)-K(+)-ATPase and Ca(2+)-ATPase activities were observed 2 weeks and 4 weeks after operation. RESULTS: Electric stimulation could protect mitochondria and sarcoplasmic reticulum from the degeneration. The reduction rates of muscle cell diameter and cross section in the experimental side were slower significantly than those in control side. There was no influence on fibrillation potential amplitude in the both sides after electric stimulation. The reduction rates of Na(+)-K(+)-ATPase activity in the experimental side were slower 15.59% and 27.38% respectively than those in the control side. The reduction rates of Ca(2+)-ATPase activity in the experimental side were slower 4.83% and 21.64% respectively than those in the control side. CONCLUSION: The electric stimulation can protect muscle histology, electrophysiology and enzymic histochemistry of denervated skeletal muscle from the degeneration. The electric stimulation is an effective method to prevent and treat muscle atrophy.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • CLINICAL ANALYSIS OF ELECTRICAL STIMULATION THRESHOLD OF NERVE FASCICLE DURING SELECTIVE POSTERIOR RHIZOTOMY

    Abstract This experiment was to study the feasibility from direct observation of muscle contraction of the lower extremity fromelectrical stimulation threshold of nerve fascicle in identifying the Iα intrafusal afferent fibers during selective posterior rhizotomy (SPR) and to investigate the clinical relationship between the muscle spasm and the electrical stimulation of nerve fascicles. The electrical stimulation threshold of all nerve fascicles in 36 cases during SPR were analysed statistically. The results showed that there was a significant difference between the electrical stimulation threshold of the severed nerve fascicles and intact nerve fascicles no matter the nerve root or each posterior nerve rootlet was examined. It was simple and reliable for surgeons to identify correctly the Iα intrafusal afferent fibers intraoperatively from direct observation of the electrical stimulation threshold of nerve fascicle.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • The efficacy of pelvic floor electrical stimulation on urinary dysfunction:a meta-analysis

    ObjectivesTo systematically review the efficacy of pelvic floor electrical stimulation on urinary dysfunction.MethodsPubMed, EMbase, The Cochrane Library, CBM, CNKI, VIP and WanFang Data databases were searched to collect randomized controlled trials (RCTs) on the efficacy of pelvic floor electrical stimulation on urinary dysfunction from inception to August 2018. Two reviewers independently screened literature, extracted data and assessed risk of bias of included studies; then, meta-analysis was performed by using RevMan 5.3 software.ResultsA total of 9 RCTs involving 559 patients were included. The results of meta-analysis showed that the pelvic floor electrical stimulation group was superior to the control group in bladder volume before and after treatment(MD=79.25, 95%CI 40.36 to 118.15, P<0.000 1), residual urine volume (MD=35.50, 95%CI 7.60 to 63.41, P=0.01), maximum detrusor pressure (MD=5.19, 95%CI 2.11 to 8.27, P<0.001), number of leaks (RR=1.95, 95%CI 1.39 to 2.52, P<0.000 01), daily average urination frequency (RR=2.64, 95%CI 1.97 to 3.31, P<0.000 01), and international lower urinary tract score (MD=5.07, 95%CI 2.17 to 7.96, P=0.000 6).ConclusionsCurrent evidence shows that pelvic floor electrical stimulation is an effective therapy for urinary dysfunction. Due to limited quality and quantity of the included studies, more high quality-studies are required to verify the above conclusion.

    Release date:2019-04-19 09:26 Export PDF Favorites Scan
  • Analysis of the effect of neuromuscular electrical stimulation on corticomuscular coupling during standing balance

    Neuromuscular electrical stimulation (NMES) has been proven to promote human balance, but research on its impact on motor ability mainly focuses on external physical analysis, with little analysis on the intrinsic neural regulatory mechanisms. This study, for the first time, investigated the effects of NMES on cortical activity and cortico-muscular functional coupling (CMFC) during standing balance. Twelve healthy subjects were recruited in bilateral NMES training, with each session consisting of 60 electrically induced isometric contractions. Electroencephalogram (EEG) signals, electromyogram (EMG) signals, and center of pressure (COP) signals of the foot sole were collected before stimulation, two weeks after stimulation, and four weeks after stimulation while the subjects maintained standing balance. The results showed that NMES training improved subjects' postural stability during standing balance. Additionally, based on the EMG power spectral density (PSD), the κ frequency band was defined, and EEG-EMG time-frequency maximal information coefficients (TFMIC) were calculated. It was found that NMES enhanced functional connectivity between the cortex and lower limb muscles, with varying degrees of increase in β-κ and γ-κ frequency band CMFC after stimulation. Furthermore, sample entropy (SE) of EEG signals also increased after training. The results of this study confirm that NMES training can enhance CMFC and brain activation during standing balance. This study, from the perspective of physiological electrical signals, validates the effectiveness of NMES for balance training and provides objective assessment metrics for the training effects of NMES.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
  • Study on deep brain magnetic stimulation method based on magnetic replicator

    Existing neuroregulatory techniques can achieve precise stimulation of the whole brain or cortex, but high-focus deep brain stimulation has been a technical bottleneck in this field. In this paper, based on the theory of negative permeability emerged in recent years, a simulation model of magnetic replicator is established to study the distribution of the induced electric field in the deep brain and explore the possibility of deep focusing, which is compared with the traditional magnetic stimulation method. Simulation results show that a single magnetic replicator realized remote magnetic source. Under the condition of the same position and compared with the traditional method of stimulating, the former generated smaller induced electric field which sharply reduced with distance. By superposition of the magnetic field replicator, the induced electric field intensity could be increased and the focus could be improved, reducing the number of peripheral wires while guaranteeing good focus. The magnetic replicator model established in this paper provides a new idea for precise deep brain stimulation, which can be combined with neuroregulatory techniques in the future to lay a foundation for clinical application.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Prospect of application of novel neuromodulation technology in children with drug-refractory epilepsy

    In the treatment of drug-refractory epilepsy in children, surgical treatment has a good clinical effect. However, for children whose surgical site is difficult to determine and who cannot undergo resectional surgery, neuromodulation techniques are one of the treatments that can be considered. At present, new neuromodulation technologies in children mainly include transcutaneous vagus nerve stimulation (transcutaneous auricular vagus nerve stimulation, ta-VNS), deep brain stimulation (deep brain stimulation, DBS), reactive nerve stimulation (responsive neurostimulation, RNS), transcranial magnetic stimulation (transcranial magnetic stimulation, TMS), transcranial direct current stimulation (transcranial direct current stimulation, TDCS) and transcranial alternating current stimulation (transcranial alternating current stimulation, TACS). This article briefly discussed the clinical efficacy and safety of various currently available neuromodulation technologies, so as to provide a reference for the rational selection and application of neuromodulation technologies, and improve the clinical efficacy and quality of life of children with drug-refractory epilepsy.

    Release date:2025-01-11 02:34 Export PDF Favorites Scan
  • Simulation study on parameter optimization of transcranial direct current stimulation based on rat brain slices

    Transcranial direct current stimulation (tDCS) is an important method for treating mental illnesses and neurodegenerative diseases. This paper reconstructed two ex vivo brain slice models based on rat brain slice staining images and magnetic resonance imaging (MRI) data respectively, and the current densities of hippocampus after cortical tDCS were obtained through finite element calculation. Subsequently, a neuron model was used to calculate the response of rat hippocampal pyramidal neuron under these current densities, and the neuronal responses of the two models under different stimulation parameters were compared. The results show that a minimum stimulation voltage of 17 V can excite hippocampal pyramidal neuron in the model based on brain slice staining images, while 24 V is required in the MRI-based model. The results indicate that the model based on brain slice staining images has advantages in precision and electric field propagation simulation, and its results are closer to real measurements, which can provide guidance for the selection of tDCS parameters and scientific basis for precise stimulation.

    Release date:2024-10-22 02:39 Export PDF Favorites Scan
  • Nursing analysis of 7 cases with Tardive dyskinesia treated by deep brain stimulation

    ObjectiveTo explore the best nursing regimen for patients with severe Tardive dyskinesia (TD) after deep brain stimulation (DBS). MethodsTo analyze the clinical nursing data of 7 patients with TD treated by DBS in our department from January 2018 to August 2019, preoperative assessment of the patient's condition, dyskinesia care, psychological care, preoperative preparation, preoperative guidance, etc. General nursing, observation and nursing of complications, psychological nursing, safety management and rehabilitation training of limb function were carried out after operation discharge to discharge guidance, daily life guidance, DBS device-related education and other post-discharge continuous care to help patients improve quality of life. The changes of TD symptoms were assessed with the abnormal involuntary movement scale -LRB-AIMS, the nursing effect was assessed with the psychiatric nursing observation sc-Nosiee (NOSIE) , and the self-care ability was assessed with the ability of daily livin-ADL- scale (ADL). ResultsAll of the 7 TD patients recovered well after operation, without complications caused by improper nursing, and the TD symptoms were relieved. The AIMS and NOSIE scores were significantly lower at 1 month, 3 months and 1 year after operation than those before operation (P<0.05). The ADL scores were significantly higher than those before operation (P<0.05). ConclusionIn order to treat TD patients with DBS operation, we should pay attention to the pertinent nursing in perioperative period and the continuous nursing after discharge, it is of great significance to relieve the symptoms of involuntary movement, improve the mental state and improve the self-care ability of patients with TD.

    Release date:2023-05-04 04:20 Export PDF Favorites Scan
  • Research on enhancement of mental rotation ability based on transcranial direct current stimulation

    Transcranial direct current stimulation (tDCS) is a non-invasive low-current brain stimulation technique, which is mainly based on the different polarity of electrode stimulation to make the activation threshold of neurons different, thereby regulating the excitability of the cerebral cortex. In this paper, healthy subjects were randomly divided into three groups: anodal stimulation group, cathodal stimulation group and sham stimulation group, with 5 subjects in each group. Then, the performance data of the three groups of subjects were recorded before and after stimulation to test their mental rotation ability, and resting state and task state electroencephalogram (EEG) data were collected. Finally, through comparative analysis of the behavioral data and EEG data of the three groups of subjects, the effect of electrical stimulation of different polarities on the three-dimensional mental rotation ability was explored. The results of the study found that the correct response time/accuracy rate and the accuracy rate performance of the anodal stimulation group were higher than those of the cathodal stimulation and sham stimulation groups, and there was a significant difference (P < 0.05). The alpha wave power analysis found that the mental rotation mainly activates the frontal lobe, central area, parietal lobe and occipital lobe. In the anodal stimulation group, the alpha wave power changed significantly in the frontal lobe and occipital lobe (P < 0.05). The results of this paper show that anodal stimulation group can improve the mental rotation ability of the subjects to a certain extent. The results of this paper can provide important theoretical support for further research on the mechanism of tDCS on mental rotation ability.

    Release date:2021-10-22 02:07 Export PDF Favorites Scan
8 pages Previous 1 2 3 ... 8 Next

Format

Content