Transcuataneous electrical nerve stimulation (TENS) analgesia as a non-drug method has received people's more and more attention recently. Considering problems of existing products, such as unstable performance and unsatisfied effectiveness, we developed a new analgesia therapy system for delivery based on bio-feedback TENS in our laboratory. We proposed a new idea for stimulation signal design, that is, we modulated a middle frequency signal by a traditional low frequency TENS wave in the new system. We designed different prescription waves for pain relief during a uterine contraction or massage between contractions. In the end, a bio-feedback TENS method was proposed, in which the waveforms of stimulation signals were selected and their parameters were modified automatically based on feedback from uterine pressure, etc. It was proved through quality tests and clinical trials that the system had good performance and satisfied analgesia effectiveness.
In the treatment of drug-refractory epilepsy in children, surgical treatment has a good clinical effect. However, for children whose surgical site is difficult to determine and who cannot undergo resectional surgery, neuromodulation techniques are one of the treatments that can be considered. At present, new neuromodulation technologies in children mainly include transcutaneous vagus nerve stimulation (transcutaneous auricular vagus nerve stimulation, ta-VNS), deep brain stimulation (deep brain stimulation, DBS), reactive nerve stimulation (responsive neurostimulation, RNS), transcranial magnetic stimulation (transcranial magnetic stimulation, TMS), transcranial direct current stimulation (transcranial direct current stimulation, TDCS) and transcranial alternating current stimulation (transcranial alternating current stimulation, TACS). This article briefly discussed the clinical efficacy and safety of various currently available neuromodulation technologies, so as to provide a reference for the rational selection and application of neuromodulation technologies, and improve the clinical efficacy and quality of life of children with drug-refractory epilepsy.
Transcranial direct current stimulation (tDCS) is an emerging non-invasive brain stimulation technique. However, the rehabilitation effect of tDCS on stroke disease is unclear. In this paper, based on electroencephalogram (EEG) and complex network analysis methods, the effect of tDCS on brain function network of stroke patients during rehabilitation was investigated. The resting state EEG signals of 31 stroke rehabilitation patients were collected and divided into stimulation group (16 cases) and control group (15 cases). The Pearson correlation coefficients were calculated between the channels, brain functional network of two groups were constructed before and after stimulation, and five characteristic parameters were analyzed and compared such as node degree, clustering coefficient, characteristic path length, global efficiency, and small world attribute. The results showed that node degree, clustering coefficient, global efficiency, and small world attributes of brain functional network in the tDCS group were significantly increased, characteristic path length was significantly reduced, and the difference was statistically significant (P < 0.05). It indicates that tDCS can improve the brain function network of stroke patients in rehabilitation period, and may provide theory and experimental basis for the application of tDCS in stroke rehabilitation treatment.
Median nerve electrical stimulation is a common peripheral nerve electrical stimulation treatment technology in clinic. With simple operation, it has been widely used in clinical to promote coma after craniocerebral trauma, relieve pain, improve cognition, Parkinson’s disease and so on. However, its mechanism has always been a hot topic and difficult part. At present, there are a large number of clinical efficacy studies and animal experiments of median nerve electrical stimulation at home and abroad. This article reviews the clinical application and animal experiments of median nerve electrical stimulation in recent years, and summarizes its mechanism, hoping to contribute to relevant clinical applications and research.
Epilepsy is one of the most common neurological disorders, and surgical intervention is usually used for drug-resistant focal epilepsy. Cortical electrical stimulation is widely used in preoperative evaluation of epilepsy to explore the anatomical-clinical electrical correlations between epileptogenic and functional networks through electrical stimulation, and the functional brain maps produced by cortical electrical stimulation depict areas of the functional cortex at an individual level, identifying the functional cortex with greater precision, as well as helping to establish epilepsy network, enabling more precise localization of seizure zones and providing a more accurate localization for surgical resection. Electrical cortical stimulation has become a standard technique for the preoperative assessment of brain region function in brain surgery. It is an indispensable part of preoperative evaluation.The main types of functional mapping by electrical stimulation include stereoelectroencephalography (SEEG) and subdural electrode (SDE), SEEG-guided cortical electrical stimulation is gradually becoming more mainstream compared to subdural electrodes, and is increasingly valuable and important as a preoperative evaluation of epilepsy. It is increasingly demonstrating its value and importance because it avoids craniotomy, takes less time for surgery, has fewer associated complications and infections, and can explore deep lesions, increasing the understanding of human functional neuroanatomy and enabling more precise localization of seizure zones.This article reviews the history of the development of cortical electrical stimulation technology, the intrinsic mechanisms, the value of the application of SEEG, and also provides a comprehensive comparison between SEEG and SDE, despite the irreplaceable advantages of SEEG, attention should be paid to the unresolved clinical and scientific issues of SEEG, and the establishment of a consensus-based clinical guideline, as the application of this technology will be more widely used in both clinical and scientific work.
Motor imagery is often used in the fields of sports training and neurorehabilitation for its advantages of being highly targeted, easy to learn, and requiring no special equipment, and has become a major research paradigm in cognitive neuroscience. Transcranial direct current stimulation (tDCS), an emerging neuromodulation technique, modulates cortical excitability, which in turn affects functions such as locomotion. However, it is unclear whether tDCS has a positive effect on motor imagery task states. In this paper, 16 young healthy subjects were included, and the electroencephalogram (EEG) signals and near-infrared spectrum (NIRS) signals of the subjects were collected when they were performing motor imagery tasks before and after receiving tDCS, and the changes in multiscale sample entropy (MSE) and haemoglobin concentration were calculated and analyzed during the different tasks. The results found that MSE of task-related brain regions increased, oxygenated haemoglobin concentration increased, and total haemoglobin concentration rose after tDCS stimulation, indicating that tDCS increased the activation of task-related brain regions and had a positive effect on motor imagery. This study may provide some reference value for the clinical study of tDCS combined with motor imagery.
To observe the effect of percutaneous electrical stimulation on peripheral nerve regeneration, a model was created on the sciatic nerves of 56 rats from either sectioned and followed by direct anastomosis or clamping of the nerve. The indices, such as conducting velocity of nerve, maximal induced action potential of muscle, growth speed of nerve, rateof axon crossing anastomosis site, number of muscular fiber on transverse area and weight of muscle by autocontrol were compared. In this study, 36 rats were divided into two groups, 24 rats in Group 1 and 12 rats in Group 2. In Gourp 1, both sciatic nerves were sectioned and was anastomozed 4 weeks later. One side of the nerve was stimulated with percutaneous electric current, the other side was served as control. In Group 2, both sides of nerves were clamped and the electical stimulationwas carried out on one side. The parameters of the electric current were 2~5HZ, 0.4m/s, 24~48V. The electrophysiological and histomorphological features were observed 1 to 6 weeks after operation. The results showed that in the stimulatedside, the indices were all superior to that of the control side. This suggestedthat electrical stimulation could promote peripheral nerve regeneration.
ObjectiveTo systematically review the efficacy of three transcranial direct current stimulation protocols (anodal stimulation, cathodal stimulation, and bipolar stimulation) on upper extremity function interventions in stroke patients. MethodsPubMed, EMbase, The Cochrane Library, Web of Science, CNKI, CBM, WanFang Data and VIP databases were electronically searched to collect randomized controlled trials (RCTs) on the efficacy of three transcranial direct current stimulation protocols on upper extremity function interventions in stroke patients from inception to April 2022. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies; then, the network meta-analysis was performed by using R software and ADDIS software. ResultsA total of 64 RCTs involving 3 968 patients were included. The results of network meta-analysis showed that, the probability order of the three stimulation methods on FMA-U, MBI, NIHSS score was: anode>bipolar>cathode>control. In addition, the probability order on ARAT and BBT score was: anode>cathode>bipolar>control. ConclusionCurrent evidence shows that the intervention effect of anodic stimulation on upper limb function of stroke patients may be better. Due to limited quality and quantity of the included studies, more high-quality studies are needed to verify above conclusion.
Transcranial direct current stimulation (tDCS) is a non-invasive technique that uses constant low-intensity direct current (1 to 2 mA) to regulate neuronal activity in the cerebral cortex. In recent years, tDCS has received more and more attention as a tool to explore human brain function and treat various neurological diseases. However, there is still a lack of systematic and comprehensive reviews in the tDCS treatment of post-stroke dysfunction. This article reviews the treatment of post-stroke dysfunction with tDCS, integrates relevant basic research and clinical research in recent years, summarizes and discusses the theoretical mechanism and application effect of tDCS in the treatment of post-stroke dysfunction, so as to provide a basis for further research.