Objective To investigate the relationship of pulmonary surfactant protein D( SP-D) with chronic obstructive pulmonary disease ( COPD) by measuring SP-D level in serum and lung tissue of rats with COPD.Methods The rat COPD model was established by passive smoking as well as intratracheal instillation of lipopolysaccharide ( LPS) . Thirty male SD rats were randomly divided into a control group, a LPS group, and a COPD group( n =10 in each group) . The pathologic changes of lung tissue and airway were observed under light microscope by HE staining. Emphysema changes were evaluated by mean linear intercept ( MLI) of lung and mean alveolar number ( MAN) . The level of SP-D in serum was measured by enzymelinked immunosorbent assay ( ELISA) . The expression of SP-D in lung tissue was detected by Western-blot and immunohistochemistry.Results The MLI obviously increased, and MAN obviously decreased in the COPD group compared with the control group ( Plt;0.05) . There was no significant difference in the MLI and MAN between the LPS group and the control group ( Pgt;0.05) . The serum SP-D level was ( 49.59 ±2.81) ng/mL and ( 53.21±4.17) ng/mL in the LPS group and the COPD group, which was significantly higher than that in the control group [ ( 42.14±2.52) ng/mL] ( Plt;0.05) . The expression of SP-D in lung tissue was 0.56±0.01 and 0.63±0.01 in the LPS group and the COPD group, which was also obviously ber than that in the control group ( 0.39 ±0.01) ( Plt;0.05) .Meanwhile the SP-D levels in serumand lung tissue were higher in the COPD group than those in the LPS group ( Plt;0.05) . The levels of SP-D between serum and lung tissue were positively correlated in all three groups ( r=0.93, 0.94 and 0.93, respectively, Plt;0.01) .Conclusion Both the SP-D level in serum and in lung tissue increase significantly in COPD rats and correlate well each other, which suggests that SP-D may serve as a biomarker of COPD.
Objectives To investigate the expression of pax-6 in ret ina of in fant monkeys with myopia induced by optical defocus, and to determine the role of pax-6 would play or not in onset and development of myopia and emmetropization.Methods Nine healthy infant rhesus monkeys, aged from 1 to 3 months, were selected and wore spectacle lenses or underwent photorefractive keratectomy (PRK).Transcription polymerase chain reaction method and quantitative analysis were used to determine the expression of pax-6 in the retina with myopia induced by optical defocus in different time, and the result was compared with that in retina without myopia.Results The myopia caused by hyperopic defocus was found. The expression of pax-6 in the retina with myopia induced by optical defocus was significantly higher than that in the retina without myopia(t=3.480,P=0.004).Conclusions The expression of pax-6 is enhanced by hyperopic defocus in the infant monkey retina, which suggests that pax-6 may be involved in vision-dependent eye growth and emmetropization. (Chin J Ocul Fundus Dis,2003,19:201-268)
Objective To investigate the expression of T cell receptor (TCR) Vβ8.3 gene on CD4+ T lymphocytes in the rats with experimental autoimmune uveoretinitis (EAU). Methods Eighteen Lewis rats were divided into EAU, complete Freund′s adjuvant, and the control group. Inter photoreceptor retinoid-binding protein (IRBP) R16 peptide was synthesized using Fmoc procedure for induction of EAU. Magnetic absorption cell sorting (MACS) me thod was used to isolate the CD4+T lymphocytes from the spleen of the rats. Flow cytometry was used to monitor the efficiency of isolation. The expression of TCR Vβ8.3 gene segment on CD4+T lymphocytes was determined by fluorescent quantitative polymerase chain reaction. Results EAU was successfully induced in the Lewis rats immunized with IRBP R16 peptide. The proportion of CD4+T lymphocytes isolated by means of MACS was statistically higher than that before isolation (P<0.001). The expression of TCR Vβ8.3 gene segment on CD4+ T lymphocytes in EAU rats was significantly higher than that in the control (P<0.05). Conclusions There is a predominant usage of antigen-specific TCR Vβ 8.3 gene in EAU rats induced by IR BP R16 peptide, which may serve as a target for immunotherapy of EAU. (Chin J Ocul Fundus Dis,2004,20:165-167)
Purpose To determine the effect of exogenous interleukin-1alpha; (IL-1alpha;) on the retina and its vasculature and VEGF expression in SD rats. Methods IL-1alpha;2.0 ng (20 mu;l) were injected into the vitreous of 8 left eyes of 8 SD rats while steriled PBS were injected into 8 right contralateral eyes of the same rats as control. All eyes were assessed by direct ophthalmoscopy every day and enucleated on the 7 thpostoperative day. Histological examination (hemato xylineosin staining) and immunohistochemical staining with antibody against VEGF antigen were performed, and sections were observed and photographed under light microscopy. Results ①All 8 IL-1alpha; inject ed eyes developed epiretinal membranes and extraretinal neovascularization on the 3 rd postoperative days while none of the 8 control eyes exhibited any a bnormal retinal vascular changes and they were confirmed by HE staining;②Immuno staining identified VEGF express mainly in the inner layer of vessel walls, the epiretinal membranes, the neuroganglional layer and the photoreceptor layer of retina, while the control eyes showed only weak positive staining in the photo receptor layer. Conclusions IL-1alpha; is capable of inducing vitreo retinal neovascularization,and increasing the expression of VEGF in the retina and epiretinal membranes. (Chin J Ocul Fundus Dis, 2001,17:135-137)
Peripapillary intrachoroidal cavitation (PICC) is a common pathological change observed in high myopia. The exact pathogenesis of PICC is still unclear. Expansion and mechanical stretching of the peripapillary sclera, breakage and defect in the retina near the border of the myopic conus and communication between intrachoroidal cavity and the vitreous space may be important segments during the development of PICC. Color fundus photography shows a localized and well-circumscribed peripapillary lesion with yellow-orange colour, often accompanied by fundus changes, such as myopic conus excavation, optic disc tilting and inferotemporal retinal vein bending at the transition from the PICC to the myopic conus. However, the PICC lesion is not easy to be recognized in the fundus photography. Fluorescein angiography shows early hypofluorescence and later progressively staining in the lesion. Indocyanine green angiography shows hypofluorescence throughout the examination. Optical coherence tomography (OCT) is vital in diagnosing PICC. Hyporeflective cavities inside the choroid, sometimes communicating with the vitreous chamber, can be observed in OCT images. OCT angiography indicates lower vessel density or even absence of choriocapillary network inside or around PICC lesions.