Objective To investigate the effectiveness of tissue transplantation combined with bone transmission in treatment of large defects of tibial bone and soft tissue. Methods Between February 2006 and February 2011, 15 cases of traumatic tibia bone and soft tissue defects were treated. There were 12 males and 3 females, aged from 16 to 54 years (mean, 32 years). After internal and external fixations of fracture, 11 patients with open fracture (Gustilo type III) had skin necrosis, bone exposure, and infection; after open reduction and internal fixation, 2 patients with closed fracture had skin necrosis and infection; and after limb replantation, 2 patients had skin necrosis and bone exposure. The area of soft tissue defect ranged from 5 cm × 5 cm to 22 cm × 17 cm. Eight cases had limb shortening with an average of 3.5 cm (range, 2-5 cm) and angular deformity. The lenghth of bone defect ranged from 4 to 18 cm (mean, 8 cm). The flap transplantation and skin graft were used in 9 and 6 cases, respectively; bone transmission and limb lengthening orthomorphia were performed in all cases at 3 months after wound healing; of them, 2 cases received double osteotomy bone transmission, and 14 cases received autologous bone graft and reset after apposition of fracture ends. Results All flaps and skin grafts survived; the wound healed at 3.5 months on average (range, 3 weeks-18 months). The length of bone lengthening was 6-22 cm (mean, 8 cm). The time of bone healing and removal of external fixation was 9.5-39.0 months (mean, 15 months). The healing index was 40-65 days/cm (mean, 55 days/cm). All patients were followed up 1-5 years (mean, 4 years). The wounds of all the cases healed well without infection or ulceration. The functions of weight-bearing and walking were recovered; 6 cases had normal gait and 9 cases had claudication. The knee range of motion was 0° in extention, 120-160° in flexion (mean, 150°). According to the American Orthopaedic Foot and Ankle Society (AOFAS) scoring system for ankle function, the results were excellent in 7 cases, good in 4 cases, and fair in 4 cases, with an excellent and good rate of 73.3%. Conclusion Tissue transplantation combined with bone transmission is an effective method to treat large defects of soft tissue and tibial bone, which can increase strength of bone connection and reduce damage to the donor site.
ObjectiveTo investigate the clinical value of pedicled latissimus dorsi Kiss flap in repairing chest wall large skin defect after tumor operation. MethodsA retrospective analysis was made on the clinical data from 15 cases of chest wall tumors treated between December 2010 and December 2015. There were 2 males and 13 females with an average age of 51.8 years (range, 43-60 years); there were 11 cases of locally advanced breast cancer, 3 cases of fibrosarcoma in chest wall, and 1 case of chest wall radiation ulcer with a median disease duration of 24.1 months (range, 6 months to 8 years). The area of skin defects was 17 cm×12 cm to 20 cm×18 cm after primary tumor resection; the pedicled latissimus dorsi Kiss flap was designed to repair wounds. The flap was a two-lobed flap at a certain angle on the surface of latissimus dorsi based on the thoracodorsal artery, with a size of 17 cm×6 cm to 20 cm×9 cm for each lobe. The donor site was sutured directly. ResultsFourteen flaps survived with primary healing of wound; delayed healing was observed in 1 flap because of distal necrosis; and healing by first intention was obtained at the donor sites. The follow-up time was from 6 months to 3 years (mean, 21.6 months). The flap had good appearance with no bloated pedicle. The shoulder joint activities were normal. No local recurrence occurred, but distant metastasis in 2 cases. No obvious scar was found at donor sites. ConclusionThe application of pedicled latissimus dorsi Kiss flap to repair chest wall skin defects after tumor resection has important clinical value, because of the advatages of simple operation, minor donor site damage and rapid postoperative recovery, especially for late stage cancer patients.
Objective To investigate the operative procedure and the cl inical results of reverse lateral tarsal artery flap in treating forefoot skin and soft tissue defect. Methods From August 2007 to April 2009, 11 patients with forefoot skin and soft tissue defect were treated with reverse lateral tarsal artery flaps, including 7 males and 4 females aged from 16 to 60 years(36 years on average). Of 11 cases, defects were caused by crash in 5 cases, by grind contusion in 3 cases and the course disease was 4-12 hours; by tumor extended resection in 3 cases and the disease course was 3-12 months. There were 5 wounds on the dorsum of first metatarsophalangeal joint, 2 on the dorsum of the first toes, and 4 on the dorsum of distal part of metatarsal bones. The area of defect ranged from 4 cm × 2 cm to 6 cm × 5 cm. There were 6 cases of tendon exposure, 4 cases of tendon defect with bone exposure, and 1 case of tendon defect with open dislocation of metatarsophalangeal joint. The flap was designed with dorsal artery of foot as its pedicle. The plantar perforating branch was designed as its rotating point. And the flaps were transferred retrogradely to repair the forefoot wounds. The flap area ranged from 4.5 cm × 2.5 cm to 6.5 cm × 4.5 cm. The lateral dorsal nerve of foot was anastomosed with the nerve in wound area in 7 cases. Donor site was covered by full thickness skin graft. Results Partial necrosis occurred and was cured by dressing change, followed by skin graft in 2 cases. The flaps survived and primary heal ing was achieved in the other 9 cases. All the skin grafts of donor site survived and primary heal ing wasachieved after operation. All the patients were followed up for 6 months to 2 years, averaged 13 months. The texture and color of the flap were similar to skin at the recipient site. All patients returned to normal in walking and running and no ulceration occurred. The two point discrimination was 5-12 mm 6 months after operation in 7 patients who received nerve anastomosis, while only protective sensation recovered partly in the other 4 patients whose cutaneous nerve were not anastomosed. Conclusion Reverse lateral tarsal artery flap has the perfect shape and its blood vessel is constant. The blood pedicle is thick and long enough when transferred retrogradely. The flap is a good choice in the treatment of forefoot skin and soft tissue defect.