Ten cases of neurotmesis of posterior interosseous nerve of the forearm were treated with mierosurgical technique from Aug, 1988 to Oct. 1990, of which, 4 cases by autogenous nerve graft and 6 cases by direct neurosuture. Eight cases have been followed-up from 4 months to 1 year after operation concerning with satisfactory results. Some questions the diagnosis, the points for attention in operation, and the relation of the results and the time when the operation done were discussed. The comparison of the results and the recovery time between the autogenous-nerve graft and direct neurosuture was made.
A 0.6cm segment of right common peroneal nerve was resected in 60 SpragueDawley rats. The nerve defects were bridged by adhering the epineurium with autogenous nerve, vein, skeletal muscle, tendon and silastic tube. According to the kinds of the grafts used, the rats were divided into 5 groups. In 6 and 12 weeks after operation, the effect was assessed by motor nerve conduction velocity, weight of the anterior tibial muscle, number of distal axons and histological examination. It was demonstrated that the result from autogenous nerve graft was superior to other grafts in all aspects and that of the vein graft was better thanthe other three. The characteristics of the nerve regeneration and the process of maturation in different types of the grafts were discussed. The related microenvironment which caused the difference was also discussed.
Since Ⅰ982, Twenty-five cases of birth injuries of brachial plexus have been treated by microsurgical technipue. The satisfactory result has been obtained. The excellent and good rate are 76 per cent. The operative method included endoneurolysis, anastomosis of nerve, supraclavicular nerve grafting and transposition of phrenic nerve, accessory nerve and cervix motor nerve. In this article, the early diagnosis and differentiel diagnosis, practical physical examination method, and operative technipue were descused.
The sciatic nerves of adult rats were sectioned bilaterally and the ends of the nerves were placed in silicone tubes. One side of the distal nerve segment was inverted and that of the contralateral side was non-inverted. After 2, 4, 6 weeks, the rats were killed and the specimens were removed for macroscopic, histologic and morphometric analysis. The results showed that either the inverted or non-inverted distal nerve segments had no influence on the number of the myelinated axons in the regenerated nerves, but the number and density of the myelinated axons was markedly diminished in the inverted distal nerve segments.
Objective To investigate the effectiveness and surgical skills of microsurgical repair of radial nerve deep branch injury. Methods Between March 2001 and February 2011, 49 cases of radial nerve deep branch injury were treated by microsurgical technique. There were 40 males and 9 females with an average age of 32 years (range, 19-58 years), including 13 cases of knife-cut injury, 9 cases of electric-saw injury, 7 cases of dagger-stab injury, 6 cases of glass-cut injury, 5 cases of iatrogenic injury, 4 cases of Monteggia fracture, 3 cases of nailgun injury, and 2 cases of crush injury of the forearm complicated by fracture of the proximal radius. The disease duration ranged from 3 hours to 3 years and 8 months (mean, 4.9 months). The sites of injury were at front of supinator tube in 15 cases, in the supinator tube in 23 cases, and at back of supinator tube in 11 cases. One-stage repair was performed by end-to-end suture in 21 cases, including 9 cases of epineurial neurorrhaphy and 12 cases of perineurial neurorrhaphy; two-stage repair was performed in 28 cases, including 26 cases of sural nerve graft and 2 cases of neurolysis. Results Postoperative wounds primarily healed. All patients were followed up 21.5 months on average (range, 12-39 months). At last follow-up, in 21 cases of one-stage repair, the muscle strength of the extensor pollicis longus was level 5 in 13 cases, and level 4 in 8 cases; in 28 cases of two-stage repair, the muscle strength of the extensor pollicis longus was level 5 in 2 cases, level 4 in 21 cases, level 3 in 4 cases, and level 2 in 1 case; and significant difference was found (Z= — 5.340, P=0.000). In 9 cases undergoing epineurial neurorrhaphy at one-stage repair, the muscle strength of the extensor pollicis longus was level 5 in 3 cases, and level 4 in 6 cases; in 12 cases undergoing perineurial neurorrhaphy at one-stage repair, the muscle strength of the extensor pollicis longus was level 5 in 10 cases, and level 4 in 2 cases; and significant difference was found (Z= — 2.279, P=0.023). In 26 cases undergoing nerve graft at two-stage repair, the muscle strength of the extensor pollicis longus was level 5 in 2 cases, level 4 in 20 cases, level 3 in 3 cases, and level 2 in 1 case; in 2 cases undergoing neurolysis at two-stage repair, the muscle strength of the extensor pollicis longus was level 4 in 1 case and level 3 in 1 case; and no significant difference was found (Z= — 1.117, P=0.264). According to the upper arm function assessment criterion issued by Hand Surgery Association of Chinese Medicine Association, the results were excellent in 18 cases, good in 3 cases in one-stage repair patients; excellent in 2 cases, good in 21 cases, fair in 4 cases, and poor in 1 case in two-stage repair patients; and there was significant difference (Z= — 5.340, P=0.000). Conclusion Microsurgical one-stage repair of radial nerve deep branch injury can obtain better effectiveness than two-stage repair by nerve graft, and perineurial neurorrhaphy is significantly better than epineurial neurorrhaphy.
Objective To observe the revascularization process of transplanted nerve after transplantation of long nerve and accompanying peri pheral vessels, to investigate its relationship with nerve regeneration. Methods The mediannerve defect models of the left forelimb (3 cm in length) were made in 60 New Zealand rabbits (aged 6-8 months, weighing 2.0-2.5 kg, and male or female), which were randomly divided into 2 groups (n=30). In situ anastomosis of the median nerves was performed in the control group; in situ anastomosis of the median nerves was made in parallel to the surrounding elbow veins, the transplanted epineurium and the adventitia were sutured with nerve anastomosis l ine in the experimental group. After operation, the gross observation, electrophysiological testing, and histopathology observation was performed at 1, 2, 4, 8, and 12 weeks, and transmission electron microscope at 12 weeks to observe the revascularization of nerve grafts, nerve fiber regeneration, and functional recovery. Results In the experimental group, revascularization was observed at 1 week after operation, and the degree of revascularization was significantly higher than that in the control group at 2, 4, 8, and 12 weeks. At 8 and 12 weeks, the nerve fiber regeneration speed, quality, and quantity in the experimental group were better than those in the control group. At 2, 4, 8, and 12 weeks, the nerve conduction velocities were (10.32 ± 0.94), (13.14 ± 1.22), (22.68 ± 1.16), and (24.09 ± 1.27) m/ s respectively in the experimental group, and were (9.18 ± 1.07), (11.12 ± 1.03), (19.81 ± 1.37), and (20.67 ± 1.19) m/s in the control group, showing significant difference at 12 weeks after operation (t=3.167, P=0.001). At 12 weeks in the experimental group, the myel in sheath had similar size, less sheath plate delamination, normal Schwann cells and rich organelles, in which normal microfilaments, microtubules and axonal mitochondria were observed; axonal mitochondria had clear crestfilm and no swelling and vacuolization, and the neurofibrils basically became normal. The myelinated nerve fibers area, myelin thickness, and axon diameter were (5.93 ± 0.94) mm2, (0.72 ± 0.12) μm, and (3.12 ± 0.12) μm respectively in the experimental group, and were (5.28 ± 0.72) mm2, (0.65 ± 0.09) μm, and (2.98 ± 0.16) μm respectively in the control group, all showing significant differences (t=3.736, P=0.002; t=3.271, P=0.002; t=4.533, P=0.001). Conclusion The transplanted nerves in parallel to large blood vessels can promote angiogenesis of the transplanted nerve, and accelerate the regeneration and functional recovery of the nerves.
Objective To make a comparison between the effects of the small intestinal submucosa (SIS) graft and the insideout vein graft on repairing the peripheral nerve defects. Methods SIS was harvested from the fresh jejunum of the quarantined pig by curetting the musoca, the tunica serosa, and the myometrium; then, SIS was sterilized, dried and frozen before use. Thirty-six male SD rats were divided into 3 groups randomly, with 12 rats in each group. Firstly, the 10mm defects in the right sciatic nerves were madein the rats and were respectively repaired with the SIS graft (Group A), the insideout autologous vein graft (Group B), and the autonerve graft (Group C). At 6 weeks and 12 weeks after the operations, the right sciatic nerves were taken out, and the comparative evaluation was made on the repairing effects by the histological examination, the neural electrophysiological examination, the computerized imaging analysis, and the Trueblue retrograde fluorescence trace. Results The histological examination showed that the regenerated nerve fibers were seen across the defects in the three groups at 6 weeks after the operations. The nerve fibers were denser, the formed nerve myelin was more regular, and the fibrous tissue was less in Group A than in Group B; the nerve regeneration was more similar between Group A and Group C. At 12 weeks after the operations, the neural electrophysiological examination showed that the neural conductive rate was significantly lower in Group B than in Groups A and C (Plt;0.05),but no statistically significant difference was found between Group A and GroupC (Pgt;0.05); the component potential wave amplitude was not statistically different between Group A and Group B; however, the amplitude was significantly lower in Groups A and B than in Group C (Plt;0.05). At 6 weeks and 12 weeks after the operations, the computerized imaging analyses showed that the axiscylinder quantity per area and the nerve-tissue percentage were significantly greaterin Group A than in Group B (Plt;0.05); the average diameter of the regenerated axis cylinder, the axiscylinder quantity per area, and the nerve-tissue percentage were significantly lesser in Group B than in Group C (Plt;0.05). At 12 weeks after the operations, the Trueblue retrograde fluorescence trace revealed that the positivelylabeled neurons were found in the lumbar 3-6 dorsal root ganglion sections in the three groups. Conclusion The small intestinal submucosa graft is superior to the autologous inside-out vein graft in repairing the peripheral nerve defects and it is close to the autonerve graft in bridging the peripheral nerve defects. Therefore, the small intestinal submucosa is a promising biological material used to replace the autonerve graft.
ObjectiveTo investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. MethodsForty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L1 transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n=20) and experimental group (n=20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. ResultsAfter establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P>0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. ConclusionDirect reconstruction of the first neurons is sufficient in the regeneration of corresponding neural circuit by the growth of residual axon; but the motor function recovery of the target muscles innervated by peripheral nerve is not observed.