目的:探讨酸敏感离子通道(acid-sensing ion channels,ASICs)的四种亚型即ASIC1a、ASIC1b、ASIC2a和ASIC3是否表达于大鼠岩神经节(petrosal ganglion)神经元。方法:采用常规免疫组化法(PV法),观察正常大鼠岩神经节神经元是否表达ASIC1a、ASIC1b、ASIC2a和ASIC3。结果:在正常大鼠岩神经节神经元,可见ASIC1a、ASIC1b、ASIC2a和ASIC3表达;ASIC1a与ASIC2a,ASIC3与ASIC1b,ASIC3与ASIC1a,ASIC3与ASIC2a在岩神经节神经元上共表达。结论:正常生理情况下,大鼠岩神经节神经元均表达ASIC1a、ASIC1b、ASIC2a和ASIC3;ASICs亚型之间的共表达提示,在岩神经节可能存在ASICs异聚体的方式。
Objective To explore the effect of hydrostatic pressure on intracellular free calcium concentration ([Ca2+]i) and the gene expression of transient receptor potential vanilloid (TRPV) in cultured human bladder smooth muscle cells (hb-SMCs), and to prel iminarily probe into the possible molecular mechanism of hb-SMCs prol iferation stimulated by hydrostatic pressure. Methods The passage 6-7 hb-SMCs were loaded with Ca2+ indicator Fluo-3/AM. When the hb-SMCs were under 0 cm H2O (1 cm H2O=0.098 kPa) (group A) or 200 cm H2O hydrostatic pressure for 30 minutes (group B) and then removing the 200 cm H2O hydrostatic pressure (group C), the [Ca2+]i was measured respectively by inverted laser anningconfocal microscope. When the hb-SMCs were given the 200 cm H2O hydrostatic pressure for 0 hour, 2 hours, 6 hours, 2 hours, and 24 hours, the mRNA expressions of TRPV1, TRPV2, and TRPV4 were detected by RT-PCR technique. Results The [Ca2+]i of group A, group B, and group C were (100.808 ± 1.724), (122.008 ± 1.575), and (99.918 ± 0.887) U, respectively; group B was significantly higher than groups A and C (P lt; 0.001). The [Ca2+]i of group C decreased to the base l ine level of group A after removing the pressure (t=0.919, P=0.394). The TRPV1, TRPV2, and TRPV4 genes expressed in hb-SMCs under 200 cm H2O hydrostatic pressure at 0 hour, 2 hours, 6 hours, 12 hours, and 24 hours, but the expressions had no obvious changes with time. There was no significant difference in the expressions of TRPV1, TRPV2, and TRPV4 among 3 groups (P gt; 0.05). Conclusion The [Ca2+]i of hb-SMCs increases significantly under high hydrostatic pressure. As possible genes in stretch-activated cation channel, the TRPV1, TRPV2, and TRPV4 express in hb-SMCs under 200 cm H2O hydrostatic pressure. It is possible that the mechanical pressure regulates the [Ca2+]i of hb-SMCs by opening the stretch-activated cation channel rather than up-regulating its expression.
Chloride voltage-gated channel 7 (CLCN7) gene mutations can cause the disorder of acidification in lacunas and osteolysis, leading to osteopetrosis characterized by increased bone density throughout the body and lysosomal storage diseases. Deafness can be caused by nerve injury for bone compression, negative pressure in the middle ear and otosclerosis. This article will introduce structure and function of CLCN7 gene and CLCN7 protein, osteolysis process, including the introduction of osteoclasts and the mechanism of osteolysis, osteopetrosis, mechanism and treatment of osteopetrosis caused by CLCN7 gene mutations, as well as osteopetrosis and syndromic deafness, in order to provide a basis for clinical diagnosis and treatment.
Ion channels are involved in the mechanism of anesthetic action and side effect. The transcription and expression of ion channel genes can be modulated by general anesthetics. The adverse effect of continuous infusion of etomidate has been concerned. However, the effects of etomidate on mRNA expressions of ion channel genes remain unclear. In this study, we exposed Daphnia pulex in 250 μmol/L of etomidate for 240 min and observed the change of heart rate, phototactic behavior and blood glucose during the period of exposure, as well as the mRNA expressions of 120 ion channel genes at the end of the experiment. Compared to the controls, heart rate, phototactic behavior and blood glucose were not influenced by 250 μmol/L of etomidate. According to the quantitative PCR results, 18 of 120 Daphnia pulex ion channel genes transcripts were affected by persistent 240 min exposure to 250 μmol/L of etomidate: 2 genes were upregulated and 16 genes were down-regulated, suggesting that etomidate showed effects on many different ion channels in transcription level. Systematical exploration of transcriptional changes of ion channels could contribute to understanding of the pharmacological mechanism of etomidate.
Weightlessness in the space environment affects astronauts’ learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.
Objective To summarize research progress of relationship between chloride intracellular channel protein 1 (CLIC1) and colonic cancer. Method The related literatures in recent years on the relationship between the CLIC1 and the colonic cancer were reviewed and analyzed. Results The CLIC1 could play its physiological function as a chloride ion channel, with a wide tissue distribution and high expression in many tumor tissues. The abnormal expression of CLIC1 could result in many diseases and participate in many processes such as the occurrence, development, metastasis, and treatment of the colonic cancer. Conclusions CLIC1 might be a biomarker for early diagnosis and a target for gene therapy of colonic cancer, key genes regulated its expression, signal transduction pathways involved in occurrence and progression of colonic cancer, and interaction with other related molecules are still unclear, and further study is needed.
Objective To obtain the full-length gene and functional domains of FXYD6 gene which is a cholangiocarcinoma related gene. Methods A new strategy with the integration of bioinformatics and molecular biology was used. Bioinformatical methods were used to analyze the full-length sequence, and to predict the functional domains of its protein. And the full-length sequence of FXYD6 was isolated by polymerase chain reaction from fetal hepatic, brain and spleen cDNA libraries, and then cloned in pGEM-T vector for sequence analyzing. Goldkey Sequence Analyzing Software was used to analyze the sequence of candidate domain without signal peptide.Results The full-length sequence of FXYD6 was isolated by Touch-down PCR from fetal hepatic and brain cDNA library, but was not from spleen cDNA library. The open reading frame Finder software was used in the National Center for Biotechnology Information website to find the most probable encoding regions of FXYD6 gene. And the +1 phase was selected as the template sequence, from 67 bp to 354 bp, to predict the functional domains by Goldkey Sequence Analyzing Software. The signal peptide was located from 1 amino acid (aa) to 17 aa, and the main domain was composed from 18 aa to 34 aa. The region between 35 aa and 57 aa was the transmembrane region. The FHYD peptide chain was highly conserved amino acids. Conclusion The study of full-length cDNA cloning of FXYD6 gene and its functional domains provides the basis for understanding the relationship between the structure and function of FXYD6. More work shall be performed on FXYD6 protein and its influence on the mechanism of cholangiocarcinoma.
【Abstract】 Objective To investigate the expression of connexin 40 (Cx40) and hyperpolarization-activated cycl icnucleotide-gated cation channel 4 (HCN4) in rat bone marrow mesenchymal stem cells (BMSCs) cocultured with the sinoatrialnode (SAN) tissues in vitro, so as to evaluate the possibil ity of BMSCs differentiation into SAN cells. Methods BMSCs wereisolated from Sprague Dawley rats (aged 4-6 weeks, male or female) by the adhesive method and cultured; BMSCs at the 3rdpassage were marked with carboxyfluorescein succinimidyl ester, and then were incubated on 6-well culture plate; cell climingsl ices were prepared at the same time. SAN tissue was taken and cut into 0.3 cm × 0.3 cm mass, and then placed into 4℃ PBSsolution. The SAN tissue mass was cocultured with marked BMSCs at the 3rd passage for 3 weeks as the experimental group, andBMSCs at 3rd passage were cultured alone for 1 week as the control group. At 1, 2, and 3 weeks after coculture, the mean integratedabsorbance (MIA) values of Cx40 and HCN4 were measured by Image pro plus 5.0 through the method of immunohistochemistry,and the mRNA expressions of Cx40 and HCN4 were identified by real-time fluorescent quantitative PCR. Results TheMIA values of Cx40 and HCN4 in the experimental group were higher than that in the control group, showing significantdifferences (P lt; 0.01). In the experimental group, the expressions of Cx40 and HCN4 increased gradually with time. The longerthe culture time was, the higher the expressions of Cx40 and HCN4 were, showing significant differences (P lt; 0.05). The mRNAexpressions of Cx40 and HCN4 in the experimental group were significantly higher than those in the control group (P lt; 0.01); inthe experimental group, the mRNA expressions of Cx40 and HCN4 increased gradually with time, showing significant differencesbetween different time points (P lt; 0.05). Conclusion The expressions of Cx40 and HCN4 increase obviously after coculturingBMSCs with SAN tissue, indicating that BMSCs could differentiate into SAN cells by coculturing with SAN tissue in vitro.
Objective To study the influence of ischemia-reperfusion on the expression of the hyperpolarization activated cycl icnucleotide gated cation channel 4 (HCN4) and to discuss the mechanism of functional disturbance of sinoatrial node tissue (SANT) after ischemia reperfusion injury (IRI). Methods Eighty five healthy adult rabbits, weighing 2-3 kg, were randomly divided into 3 groups: control group [a suture passed under the root section of right coronary artery (RCA) without l igation, n=5], experimental group A (occluding the root section of RCA for 30 minutes, then loosening the root 2,4, 8 and 16 hours, n=10), experimental group B (occluding the root section of RCA for 1 hour, then loosening the root 2, 4,8 and 16 hours, n=10). At the end of the reperfusion, the SANT was cut off to do histopathological, transmission electronmicroscopical and immunohistochemical examinations and semi-quantitative analysis. Results The result of HE stainingshowed that patho-injure of sinoatrial node cell (SANC) happened in experimental groups A and B after 2 hours of reperfusion, the longer the reperfusion time was, the more serious patho-injure of SANC was after 4 and 8 hours of reperfusion, SANC reached peak of damage after 8 to 16 hours of reperfusion; patho-injure of SANC was more serious in experimental group B than in experimental group A at the same reperfusion time. Immunohistochemical staining showed that the expression of HCN4 located in cellular membrane and cytoplasm in the central area of SANC and gradually decreased from the center to borderl ine. The integral absorbance values of HCN4 expression in the control group (397.40 ± 34.11) was significantly higher than those in the experimental group A (306.20 ± 35.77, 216.60 ± 18.59, 155.40 ± 19.11 and 135.00 ± 12.30) and in the experimental group B (253.70 ± 35.66, 138.70 ± 13.28, 79.10 ± 9.60 and 69.20 ± 8.42) after 2, 4, 8 and 16 hours of reperfusion (P lt; 0.05). With reperfusion time, the expression of HCN4 of SANC decreased, which was lowest after 8 hours of reperfusion; showing significant difference among 2, 4 and 8 hours after reperfusion (P lt; 0.05) and no significant difference between 8 and 16 hours after reperfusion (P gt; 0.05). At the same reperfusion time, the expression of HCN4 was higher in the experimental group A than in the experimental group B. The result of transmission electron microscope showed that ultramicrostructure of SANC was damaged after reperfusion in experimental groups A and B. The longer the reperfusion time was, the more serious ultramicrostructure damage of SANC was, and reached the peak of damage after 8 hours of reperfusion. Ultramicrostructure of SANC was not different between 8 and 16 hours of reperfusion. At the same reperfusion time, the ultramicrostructure damage of SANC was moreserious in experimental group B than in experimental group A. Conclusion IRI is harmful to the morphous and structure ofSANC, and effects the expression of HCN4 of SANC, which is concerned with functional disturbance and arrhythmia.