Along with the popularity of low-dose computed tomography lung cancer screening, an increasing number of early-stage lung cancers are detected. Radical lobectomy with systematic nodal dissection (SND) remains the standard-of-care for operable lung cancer patients. However, whether SND should be performed on non-metastatic lymph nodes remains controversy. Unnecessary lymph node dissection can increase the difficulty of surgery while also causing additional surgical damage. In addition, non-metastatic lymph nodes have been recently reported to play a key role in immunotherapy. How to reduce the surgical damage of mediastinal lymph node dissection for early-stage lung cancer patients is pivotal for modern concept of "minimally invasive surgery for lung cancer 3.0". The selective mediastinal lymph node dissection strategy aims to dissect lymph nodes with tumor metastasis while preserving normal mediastinal lymph nodes. Previous studies have shown that combination of specific tumor segment site, radiology and intraoperative frozen pathology characteristics can accurately predict the pattern of mediastinal lymph node metastasis. The personalized selective mediastinal lymph node dissection strategy formed from this has been successfully validated in a recent prospective clinical trial, providing an important basis for early-stage lung cancer patients to receive more personalized selective lymph node dissection with "precision surgery" strategies.
Precision medicine is a novel medical modality based on genome sequencing, bioinformatics and big data science. The studies regarding tuberculosis always concentrated on the bacteria and host in the setting of precision medicine. This review mainly introduces the application of precision medicine in the diagnosis and treatment of tuberculosis. The limits of the Chinese studies with respect to precision medicine in tuberculosis are also discussed. Moreover, the article predicates its future development.
Objective To summarize the development of process and clinical practice for radiomics. Methods Relevant literatures about the development of process and clinical practice of radiomics were collected to make a review. Results Radiomics, which resulting from big data, had been used in diagnosis, assessment of prognosis, and predictionof therapy response for neoplasm. Conclusion Radiomics is an important part of precision medical imaging in the eraof big data.
Precision medicine is a personalized medical system based on patients' individual biological information, clinical symptoms and signs, forming a new clinical research model and medical practice path. The basic idea of traditional Chinese medicine and the concept of precision medicine share many similarities. The basket trial developed for precision medicine is also suitable for clinical trials and evaluation of the efficacy of traditional Chinese medicine syndrome differentiation and treatment systems. Basket trials are used to evaluate the efficacy of a drug in the treatment of multiple diseases or disease subtypes. It has the advantages of sharing a master protocol, unifying management of subsidiary studies, simplifying the test implementation process, unifying statistical analysis, saving resources, reducing budgets and accelerating the drug evaluation progress. This is similar to the concept of using the "same treatment for different diseases" found in traditional Chinese medicine. This paper introduced the concept and method of basket trials and explored their application and advantages in clinical research into traditional Chinese medicine. This study is expected to provide references for the methodological innovation of clinical research into traditional Chinese medicine.
In order to promote the responsible development of precision medicine in China, the current situation of precision medicine in three major fields (clinical, research and commercial) was briefly introduced, and key ethical issues or disputes in each field (including informed consent, return of incidental findings, and allocation of medical resources in the clinical field; informed consent, return of research results, and data use and sharing in the research field; genetic counseling, clinical utility of genetic testing, and use of data in the field of direct-to-consumer genetic testing) were discussed. It is necessary to actively meet these ethical challenges for the development of precision medicine in China.
Lung cancer is one of the leading causes of cancer deaths worldwide. Many options including surgery, radiotherapy, chemotherapy, targeted therapy and immunotherapy have been applied in the treatment for lung cancer patients. However, how to develop individualized treatment plans for patients and accurately determine the prognosis of patients is still a very difficult clinical problem. In recent years, radiomics, as an emerging method for medical image analysis, has gradually received the attention from researchers. It is based on the assumption that medical images contain a vast amount of biological information about patients that is difficult to identify with naked eyes but can be accessed by computer. One of the most common uses of radiomics is the diagnosis and treatment of non-small cell lung cancer (NSCLC). In this review, we reviewed the current researches on chest CT-based radiomics in the diagnosis and treatment of NSCLC and provided a brief summary of the current state of research in this field, covering various aspects of qualitative diagnosis, efficacy prediction, and prognostic analysis of lung cancer. We also briefly described the main current technical limitations of this technology with the aim of gaining a broader understanding of its potential role in the diagnosis and treatment of NSCLC and advancing its development as a tool for individualized management of NSCLC patients.
Breast cancer is one of the most common malignant tumors among women. Typically, the operation of breast cancer should include breast surgery and axillary lymph node surgery since breast cancer first metastasizes to regional axillary lymph nodes. However, postoperative breast cancer-related lymphedema (BCRL) in upper limb is the most common long-term complication. The injury to upper limb lymphatic system contributes to causing the postoperative BCRL. Therefore, precision medicine in the extent of axillary lymph node surgery plays an important role in preventing BCRL which can improve the quality of life in breast cancer patients.
ObjectiveTo summarize the application of radiomics in colorectal cancer.MethodsRelevant literatures about the therapeutic decision-making, therapeutic, and prognostic evaluation of colorectal cancer using radiomics were collected to make an review.ResultsRadiomics is of great value in preoperative stages, therapeutic, and prognostic evaluation in colorectal cancer.ConclusionRadiomics is an important part of precision medical imaging for colorectal cancer.
ObjectivesTo initially construct a scientific, reasonable and precision medicine technology value judgment framework suitable for China’s national conditions based on expert consultation method, so as to provide scientific value judgment system support for China's medical insurance decision-making.MethodsThe preliminary evaluation indicator system for precision medicine technology value was established by using literature analysis and expert consultation method, and the direct weighting method was used to determine the indicators weight.ResultsAfter two rounds of expert consultation, an indicator system suitable for the value judgment of precision medicine technology in China was constructed, including 5 primary indicators (health needs, health effects, economics, innovation and suitability) and 14 secondary indicators. Each indicator was weighted according to importance.ConclusionsA set of precision medicine value judgment indicator system suitable for China has been initially established, which lays a certain foundation for further measurement research of the indicator system and provides a scientific basis for medical insurance decision-making.