Objective To report 4 methods of reconstructing soft tissue defects in oral and maxillofacial regions after tumors resection using cervical pedicle tissue flaps. Methods One hundred seventy-two soft tissue defects were repaired with cervical myocutaneous flaps after resection of oral and facial cancer( 165 cases of squamous cell carcinoma and 7 cases of salivary carcinoma). The clinical stage of the tumors was stage Ⅰ in 21 cases, stage Ⅱ in 116 cases and stage Ⅲin 35 cases. Primary sites of the lesions were the tongue (59 cases), buccal mucosa (55 cases), lower gingiva (26 cases), floor of the mouth (25 cases), parotid gland (4 cases) and oropharynx (3 cases). Infrahyoid myocutaneous flaps were used in 60 cases, platysma flaps in 45 cases, sternocleidomastoid flaps in 59 cases and submental island flaps in 8 cases. The sizes of skin paddle ranged from 2.5 cm×5.0 cm to 5.0 cm ×8.0 cm. Results Among 153 survival flaps, there were55 infrahyoid myocutaneous flaps, 40 platysma flaps, 52 sternocleidomastoid flaps and 6 submental island flaps. There were 11 cases of total flap necrosis and8 cases of partial flap necrosis. The success rates were 91.67%(55/60) for infrahyoid myocutaneous flap, 88.89%(40/45) for platysma flap, 88.14% (52/59) for sternocleidomastoid flap and 75%(6/8) for submental island flap. After a follow-up of 3 11 years(5.7 years on average) among 101 cases local reccurence in 18 cases, cervical reccurence in 4 cases, distance metastasis in 2 cases. The survical rate at 3 years were 83.17%(84/101). Conclusion Cervical pedicle tissue flaps haveclinical value in reconstruction of small and medium-sized soft tissue defects after resection of oral and maxillofacial tumors.
Objective To construct a new type of self-assembling peptide nanofiber scaffolds—RGDmx, and to study the cell compatibility of the new scaffolds and the proliferation and chondrogenic differentiation of precartilaginous stem cells(PSCs) in scaffolds. Methods PSCs were separated and purified from newborn Sprague Dawley rats by magnetic activated cell sorting and indentified by immunohistochemistry and immunofluorescent staining. The RGDmx were constructed by mixing KLD-12 and KLD-12-PRG at volume ratio of 1 ∶ 1. PSCs at passage 3 were seeded into the KLD-12 scaffold (control group) and RGDmx scaffold (experimental group). The proliferation of PSCs in 2 groups were observed with the method of cell counting kit (CCK) -8 after 1, 3, 7, and 14 days after culture. The RGDmx were constructed by mixing KLD-12-PRG and KLD-12 at different volume ratios of 0, 20%, 40%, 60%, 80%, and 100% and the prol iferation of PSCs was also observed. The complete chondrogenic medium (CCM) was used to induce chondrogenic differentiation of PSCs in different scaffolds. The differentiation of PSCs was observed by toluidine blue staining and RT-PCR assay. Results PSCs were separated and purified successfully, which were identified by immunohistochemistry and immunofluorescent staining methods. The results of CCK-8 showed that the absorbance (A) value in the experimental group increased gradually and reached the highest at 7 days; the A value in the experimental group was significantly higher than that in the control group at 7 days and 14 days (P lt; 0.05). Meanwhile, the A value in the RGDmx scaffold with a volume ratio of 40% was significantly higher than those in others (P lt; 0.05). After 14 days of induction culture with CCM, the toluidine blue staining results were positive in 2 groups; the results of RT-PCR showedthat the expression levels of collagen type II and the aggrecan in the experimental group were significantly higher than those in the control group (P lt; 0.05). Conclusion The self-assembling peptide nanofiber scaffold—RGDmx is an ideal scaffold for tissue engineer because it has good cell compatibility and more effective properties of promoting the differentiation of PSCs to chondrocytes.
ObjectiveTo investigate the effects of micro-fracture and insul in-l ike growth factor 1 (IGF-1) in treatment of articular cartilage defect in rabbits. MethodsTwenty-four New Zealand white rabbits (aged, 4-6 months; weighing, 2.5-3.5 kg) were randomly divided into 4 groups (n=6):micro-fractures and recombinant human IGF-1 (rhIGF-1) treatment group (group A), micro-fracture control group (group B), rhIGF-1 treatment control group (group C), and blank control group (group D). Full thickness articular cartilage defects of 8 mm×6 mm in size were created in the bilateral femoral condyles of all rabbits. The micro-fracture surgery was performed in groups A and B. The 0.1 mL rhIGF-1 (0.01 μg/μL) was injected into the knee cavity in groups A and C at 3 times a week for 4 weeks after operation, while 0.1 mL sal ine was injected in groups B and D at the same time points. At 4, 12, and 24 weeks, the gross, histological, and immunohistochemical observations were performed, and histological score also was processed according to Wakitani's score criteria. The collagen contents in the repair tissues and normal patellofemoral cartilage were detected by the improved hydroxyproline (HPR) method at 24 weeks. Electron microscope was used to observe repair tissues of groups A and B at 24 weeks. Results All animals were survival at the end of experiment. At 24 weeks after operation, defect was repaired with time, and the repair tissue was similar to normal cartilage in group A; the repair tissue was even without boundary with normal cartilage in group B; and the repair tissue was uneven with clear boundary with normal cartilage in groups C and D. Histological staining showed that the repair tissues had no difference with normal cartilage in group A; many oval chondrocytes-l ike cells and l ight-colored matrix were seen in the repair tissues of group B; only a few small spindle-shaped fibroblasts were seen in groups C and D. Moreover, histological scores of group A were significantly better than those of groups B, C, and D (P<0.05) at 4, 12, and 24 weeks. Electron microscope observation showed that a large number of lacuna were seen on the surface of repair tissue in group A, and chondrocytes contained glycogen granules were located in lacunae, and were surrounded with the collagen fibers, which was better than that in group B. Collagen content of the repair tissue in group A was significantly higher than that in groups B, C, and D (P<0.05), but it was significantly lower than that of normal cartilage (P<0.05). Conclusion Combination of micro-fracture and rhIGF-1 for the treatment of full thickness articular cartilage defects could promote the repair of defects by hyaline cartilage.
Objective To compare the effect between vascularization osteogenesis and membrane guided osteogenesis in the bone repair by the tissue engineered bone with pedicled fascial flap packing autologous red bone marrow (ARBM), so as to provide a reference for the bone defect repair in cl inic. Methods The tissue engineered bone was constructed with ARBM and the osteoinductive absorbing recombinant human materials with recombinant human bone morphogenetic protein 2. Sixty New Zealand rabbits (aged 4-5 months, weighing 2.0-2.5 kg) were randomly divided into group A (n=16), group B (n=22), and group C (n=22). The complete periosteum defect model of 1.5 cm in length was prepared in right ulnar bone, then the tissue engineered bone was implanted in the bone defect area in group A, the tissue engineered bonewith free fascial flap in group B, and the tissue engineered bone with pedicled fascial flap in group C. At 4, 8, 12, and 16 weeks, the tissue of bone defect area was harvested from 4 rabbits of each group for the general, histological, and immunohistochemical staining observations; at 8, 12, and 16 weeks, 2 rabbits of groups B and C, respectively were selected to perform ink perfusion experiment by axillary artery. Results The general observation showed that the periosteum-l ike tissues formed in the fascial flap of groups B and C, chondroid tissues formed in group B, new bone formed in group C, and the fibrous and connective tissues in group A at 4 and 8 weeks; a few porosis was seen in group A, more new bone in group B, and bone stump formation in group C at 12 and 16 weeks. Histological observation showed that there were few new blood vessels and new bone trabeculae in groups A and B, while there were large amounts of new blood vessels and mature bone trabeculae in group C at 4 and 8 weeks. There were a few new blood vessels and new bone trabeculae in group A; more blood vessels, significantly increased mature trabeculae, and the medullary cavity formation in group B; and gradually decreased blood vessels, the mature bone structure formation, and the re-opened medullary cavity in group C at 12 and 16 weeks. The immunohistochemical staining observation showed that the levels of CD105, CD34, and factor VIII were higher in group C than in groups A and B at different time points.The bone morphometry analysis showed that the trabecular volume increased gradually with time in 3 groups after operation; the trabecular volume in group C was significantly more than those in groups A and B at different time points (P lt; 0.05); and there was significant difference between groups A and B (P lt; 0.05) except the volume at 4 weeks (P gt; 0.05). The vascular image analysis showed that the vascular regenerative area ratio in group C was significantly higher than those in groups A and B at different time points (P lt; 0.05). The ink perfusion experiment showed that the osteogenic zone had sparse ink area with no obvious change in group B, while the osteogenic zone had more intensive ink area and reached the peak at 8 weeks, then decreased in group C. Conclusion The tissue engineered bone with pedicled fascial flap packing ARBM has the vascularization osteogenesis effect at early stage, but the effect disappears at late stage gradually when the membrane guided osteogenesis is main.
Objective To explore the reliability and effectiveness of prediction of the pedicle length of the proximally-based anterolateral thigh (pALT) flap which was used to repair the defects following the resection of various malignant tumors using computed tomographic angiography (CTA). Methods The clinical data of 12 patients who met the selection criteria by using pALT flap to repair wounds left after malignant tumor resection between June 2015 and December 2020 were retrospectively analyzed. There were 5 males and 7 females; the age ranged from 16 to 80 years, with an average age of 54.4 years. After tumor resection, the soft tissue defect ranged from 15 cm×5 cm to 30 cm×12 cm; defect sites included 4 cases of lower abdomen, 3 cases of groin, 2 cases of thigh, and 3 cases of buttocks. Preoperative CTA was used to obtain the location information of the descending branch of the lateral femoral circumflex artery and its perforators by maximum density projection, and the length of the pedicle of pALT flap was estimated. Fasciocutaneous flap (5 cases) or myocutaneous flap (7 cases) were cut during operation to repair the defect, and the size of flap ranged from 20 cm×7 cm to 30 cm×12 cm. The donor site of thigh was directly sutured (11 cases) or repaired with skin graft (1 case). Bland-Altman analysis was used to detect the consistency between the pALT flap vascular pedicle length estimated by CTA and the pALT flap vascular pedicle length actually obtained during operation. ResultsOne case had distal blood supply disturbance of the flap and was repaired with skin graft after debridement; the remaining 11 flaps survived. All donor and recipient incisions healed by first intention. All 12 cases were followed up 1-12 months, with an average of 4.3 months. One patient died of pelvic tumor recurrence at 6 months after operation, and no tumor recurrence was found in the other patients. Preoperative CTA estimated that the length of pALT flap vascular pedicle was 9.3-24.7 cm, with an average of 14.7 cm; the actual length of pALT flap vascular pedicle was 9.5-25.0 cm, with an average of 14.8 cm. Bland-Altman analysis showed that there was no significant difference between the pALT flap vascular pedicle length estimated by CTA before operation and the pALT flap vascular pedicle length actually obtained during operation, and the average difference was 0.1 (95% consistency limit: –0.89, 0.74), indicating that they had good consistency. ConclusionCTA can be accurately used to localize the perforator and predict the possible pedicle length of the pALT flap. When performing a pALT flap surgery, preoperative CTA is helpful for surgeons to make a preliminary assessment of the difficult of the operation. The time for exploration of perforators and dissection of the vascular pedicle, and complications can be reduced, and the safety of the operation can be improved.
Based on transversely isotropic theory, a finite element model for three-dimensional solid-liquid coupling defect repair of articular cartilage was established. By studying stress state of host cartilage near the restoration interface, we identified deformation type of cartilage and discussed the cause of restoration interface cracking. The results showed that the host cartilage surface node near the restoration interface underwent compression deformation in the condition of surface layer defect repair. When the middle layer, deep layer or full-thickness defect were repaired, the node underwent tensile deformation. At this point, the radial dimension of cartilage increased, which might cause restoration interface cracking. If elastic modulus of the tissue engineered cartilage (TEC) was lower (0.1 MPa, 0.3 MPa), the host cartilage surface layer and middle layer mainly underwent tensile deformation. While elastic modulus of TEC was higher (0.6 MPa, 0.9 MPa), each layer of host cartilage underwent compression deformation. Therefore, the elastic modulus of TEC could be increased properly for full-thickness defect repair. This article provides a new idea for evaluating the effect of cartilage tissue engineering repair, and has a certain guiding significance for clinical practice.
ObjectiveTo explore the feasibility and technical essentials of soft tissue defect reconstruction following malignant tumor removal of limbs using perforator propeller flaps. MethodBetween July 2008 and July 2015, 19 patients with malignant limb tumor underwent defect reconstruction following tumor removal using the perforator propeller flaps. There were 13 males and 6 females with an average age of 53.4 years (range, 20-82 years). The disease duration ranged from 1 to 420 months (mean, 82 months). The tumors located at the thigh in 10 cases, at the leg in 2 cases, at the arm in 1 case, at the forearm in 1 case, around the knee in 2 cases, and around the elbow joint in 3 cases. Totally 23 flaps (from 8 cm×3 cm to 30 cm×13 cm in size) were used to reconstruct defects (from 4 cm×4 cm to 24 cm×16 cm in size). The potential source arteries included the femoral artery (n=2) , profunda femoral artery (n=3) , superficial circumflex iliac artery (n=1) , lateral circumflex femoral artery (n=6) , superior lateral genicular artery (n=2) , peroneal artery (n=2) , anterior tibial artery (n=1) , brachial artery (n=4) , and radial artery (n=1) . The remaining one was a free style perforator flap. ResultsPartial distal flap necrosis occurred in 3 cases after surgery with rotation angles of 180, 150, and 100° respectively, which were reconstructed after debridement using a free-style perforator flap in 1 case and using free skin grafting in the other 2 cases. The other 20 flaps survived completely after surgery. Primary healing of incisions was obtained at the donor and recipient sites. There was no severe complication such as infection, hematoma, and total flap failure. All patients were followed up 3 months to 5 years (mean, 19 months). One patient with malignant melanoma around the elbow joint had tumor recurrence, and underwent secondary tumor resection. The appearance, texture, and color of the flaps were similar to those at the recipient site. ConclusionsFor patients with malignant tumor of the limb, the perforator propeller flap can be an alternative option for soft tissue defect reconstruction after tumor resection, with the advantages of relatively simple operation and remaining the main vessels.
Objective To discuss the role of heparan sulfate (HS) in bone formation and bone remodeling and summarize the research progress in the osteogenic mechanism of HS. Methods The domestic and abroad related literature about HS acting on osteoblast cell line in vitro, HS and HS composite scaffold materials acting on the ani-mal bone defect models, and the effect of HS proteoglycans on bone development were summarized and analyzed. Results Many growth factors involved in fracture healing especially heparin-binding growth factors, such as fibroblast growth factors, bone morphogenetic protein, and transforming growth factor β, are connected noncovalently with long HS chains. HS proteoglycans protect these proteins from protease degradation and are directly involved in the regulation of growth factors signaling and bone cell function. HS can promote the differentiation of stem cells into osteoblasts and enhance the differentiation of osteoblasts. In bone matrix, HS plays a significant role in promoting the formation, maintaining the stability, and accelerating the mineralization. Conclusion The osteogenesis of HS is pronounced. HS is likely to become the clinical treatment measures of fracture nonunion or delayed union, and is expected to provide more choices for bone tissue engineering with identification of its long-term safety.
Objective To evaluate the effectiveness of the submental island flap for repair of oral defects after radical resection of early-stage oral squamous cell carcinoma (OSCC). Methods Between February 2010 and August 2011, 15 cases of early-stage OSCC were treated. Of 15 cases, 9 were male and 6 were female, aged from 48 to 71 years (mean, 63 years). The disease duration was 28-73 days (mean, 35 days). Primary lesions included tongue (3 cases), buccal mucosa (8 cases), retromolar area (2 cases), and floor of mouth mucosa (2 cases). According to TNM classification of International Union Against Cancer (UICC, 2002) of oral cancer and oropharyngeal cancer, 2 cases were classified as T1N0M0 and 13 cases as T2N0M0. The results of the pathologic type were high differentiated squamous cell carcinoma in 11 cases and moderately differentiated squamous cell carcinoma in 4 cases. The defect after resection of the lesion ranged from 5 cm × 3 cm to 8 cm × 6 cm. All the cases underwent radical resection of the primary lesion and immediate reconstruction with submental island flap except 1 case with radial forearm free flap because of no definite venous drainage. The sizes of the submental island flap varied from 6 cm × 4 cm to 9 cm × 6 cm. Results Operation time ranged from 4 hours and 30 minutes to 7 hours and 10 minutes (mean, 5 hours and 53 minutes) in 14 cases undergoing repair with submental island flap. All the flaps survived completely in 13 cases except 1 case having superficial necrosis of the flap, which was cured after conservative treatment. Temporary marginal mandibular nerve palsy occurred in 1 case, and was cured after 3 months; submandibular effusion was observed in 3 cases, and was cured after expectant treatment. The follow-up period ranged from 8 to 15 months (mean, 10.5 months) in 14 cases undergoing repair with submental island flap. Hair growth was seen on the flap and became sparse after 3 months in 2 male cases. The appearance of the face, opening mouth, swallowing, and speech were recovered well in 14 cases, and the donor site had no obvious scar. The follow-up period was 13 months in 1 case undergoing repair with radical free forearm flap, and the appearance and function were recovered well. No local recurrence was found during follow-up. Conclusion The submental island flap has reliable blood supply, and could be harvested simply and rapidly. It can be used to repair oral defects in patients with early-stage OSCC after radical resection.