ObjectiveTo compare the clinical data of pulmonary lobectomy in patients with massive hemoptysis of pulmonary tuberculosis after bronchial artery embolization in the short and long term, so as to provide a reference for clinical choices of appropriate operation time.MethodsA retrospective analysis was conducted on 33 patients with massive hemoptysis of pulmonary tuberculosis, who had received pulmonary lobectomy after bronchial artery embolization in Wuhan Pulmonary Hospital from January 2015 to November 2017, including 29 males and 4 females aged of 23-66 (52.64±9.70) years. According to the time interval between bronchial artery embolization and lobectomy, the patients were divided into a short-term group (<2 weeks, 14 patients) and a long-term group (>1 month, 19 patients). The clinical data, such as operation time, intraoperative blood loss, postoperative extubation time and serious postoperative complications, were observed in the two groups for statistical analysis.ResultsThe operative time (297.13±75.69 min vs. 231.32±67.57 min, P=0.013), intraoperative blood loss (685.74±325.51 mL vs. 355.83±259.11 mL, P=0.002), postoperative extubation time (14.07±5.24 d vs. 8.90±3.57 d, P=0.003) of the short-term group were all higher than those in the long-term group.ConclusionFor the patients with massive hemoptysis of pulmonary tuberculosis, who had surgical indications and no risk of early rebleeding after bronchial artery embolization, pulmonary lobectomy should be performed late until the patient's physical condition and the primary disease was stable.
ObjectiveTo discuss the safety and feasibility of no chest tube (NCT) after thoracoscopic pneumonectomy.MethodsThe online databases including PubMed, EMbase, The Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), WanFang Database, VIP, China Biology Medicine disc (CBMdisc) were searched by computer from inception to October 2020 to collect the research on NCT after thoracoscopic pneumonectomy. Two reviewers independently screened the literature, extracted the data, and evaluated the quality of the included studies. The RevMan 5.3 software was used for meta-analysis.ResultsA total of 17 studies were included. There were 12 cohort studies and 5 randomized controlled trials including 1 572 patients with 779 patients in the NCT group and 793 patients in the chest tube placement (CTP) group. Meta–analysis results showed that the length of postoperative hospital stay in the NCT group was shorter than that in the CTP group (SMD=–1.23, 95%CI –1.59 to –0.87, P<0.000 01). Patients in the NCT group experienced slighter pain than those in the CTP group at postoperative day (POD)1 (SMD=–0.97, 95%CI –1.42 to –0.53, P<0.000 1), and POD2 (SMD=–1.10, 95%CI –2.00 to –0.20, P=0.02), while no statistical difference was found between the two groups in the visual analogue scale of POD3 (SMD=–0.92, 95%CI –1.91 to 0.07, P=0.07). There was no statistical difference in the 30-day complication rate (RR=0.93, 95%CI 0.61 to 1.44, P=0.76), the rate of postoperative chest drainage (RR=1.51, 95%CI 0.68 to 3.37, P=0.31) or the rate of thoracocentesis (RR=2.81, 95%CI 0.91 to 8.64, P=0.07) between the two groups. No death occurred in the perioperative period in both groups.ConclusionIt is feasible and safe to omit the chest tube after thoracoscopic pneumonectomy for patients who meet the criteria.
Objective To evaluate the validity of video-assisted thoracoscopic surgery (VATS) pneumonectomy in thoracic diseases treatment. Methods We retrospectively analyzed the clinical data of 34 consecutive patients who underwent VATS pneumonectomy in Xiangya Hospital Central South University between January 2013 and October 2015. There were 26 males and 8 females at age of 35–69 (53.8±7.7) years. Results VATS pneumonectomy was completed successfully in 32 patients (5.8% conversion rate). The average operation time was 182.5±52.4 min. The average blood loss was 217.1±1 834.8 ml. Chest tube drainage flow was 3–11 (6.0±1.7) days and postoperative hospital stay was 5–12 (7.6±1.8) days. Eleven patients got postoperative complications (34.3%), mainly pulmonary infections. The 32 patients were followed up for 10 (1–21) months. Two patients died of lung metastasis 16 or 17 months after the operation. One patient died of sudden cardiac arrest 3 months after operation. Bronchopleural fistula (BPF) happened in one patient after hospital discharge in 2 months. Conclusion VATS is feasible for pneumonectomy. However, further studies and follow-up are needed to verify the benefits of VATS pneumonectomy for lung cancer.
Objective To evaluate the association between pressure-controlled ventilation-volume guaranteed (PCV-VG) mode and volume-controlled ventilation (VCV) mode on postoperative pulmonary complications (PPCs) in patients undergoing thoracoscopic lung resection. Methods A retrospective cohort analysis of 329 patients undergoing elective thoracoscopic lung resection in West China Hospital of Sichuan University between September 2020 and March 2021 was conducted, including 213 females and 116 males, aged 53.6±11.3 years. American Society of Anesthesiologists (ASA) grade wasⅠ-Ⅲ. The patients who received lung-protective ventilation strategy during anesthesia were divided into a PCV-VG group (n=165) and a VCV group (n=164) according to intraoperative ventilation mode. Primary outcome was the incidence of PPCs during hospitalization. Results A total of 73 (22.2%) patients developed PPCs during hospitalization. The PPCs incidence of PCV-VG and VCV was 21.8% and 22.6%, respectively (RR=0.985, 95%CI 0.569-1.611, P=0.871). Multivariate logistic regression analysis showed that there was no statistical difference in the incidence of PPCs between PCV-VG and VCV mode during hospitalization (OR=0.846, 95%CI 0.487-1.470, P=0.553). Conclusion Among patients undergoing thoracoscopic lung resection, intraoperative ventilation mode (PCV-VG or VCV) is not associated with the risk of PPCs during hospitalization.
Abstract: The principles of 2010 National Comprehensive Cancer Network(NCCN) clinical practice guidelines in non-small cell lung cancer address that anatomic pulmonary resection is preferred for the majority of patients with non-small cell lung cancer and video-assisted thoracic surgery (VATS) is a reasonable and acceptable approach for patients with no anatomic or surgical contraindications. By reviewing the literatures on general treatment, pulmonary segmentectomy, pulmonary function reserve, and the anatomic issue of early stage non-small cell lung cancer surgery, the feasibility and reliability of thoracoscopic pulmonary segmentectomy are showed.
In recent years, the number of lung surgeries has increased year by year, and the number of patients with postoperative cough has also increased gradually. Chronic cough after lung surgery seriously affects patients' quality of life and surgical outcome, and has become one of the clinical problems that clinicians need to solve. However, there is currently no guideline or consensus for the treatment of chronic cough after lung surgery in China, and there is no standardized treatment method. Therefore, we searched databases such as PubMed, Web of Science, CNKI, and Wanfang databases ect. from 2000 to 2023 to collected relevant literatures and research data, and produced the first expert consensus on chronic cough after lung surgery in China by Delphi method. We gave 11 recommendations from five perspectives including timing of chronic cough treatment, risk factors (surgical method, lymph node dissection method, anesthesia method), prevention methods (preoperative, intraoperative, postoperative), and treatment methods (etiological treatment, cough suppressive drug treatment, traditional Chinese medicine treatment, and postoperative physical therapy). We hope that this consensus can improve the standardization and effectiveness of chronic cough treatment after lung surgery, provide reference for clinical doctors, and ultimately improve the quality of life of patients with chronic cough after lung surgery.