west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "肺损伤" 175 results
  • Intra-pulmonary Artery Infusion of Antitumor Necrosis Factor-α Antibody Attenuates Lung Injury after Cardiopu-lmonary Bypass

    Objective To investigate the protective effects of antitumor necrosis factor-α antibody (TNF-αAb) on lung injury after cardiopulmonary bypass (CPB) and their mechanisms. Methods Forty healthy New Zealand white rabbits,weighting 2.0-2.5 kg,male or female,were randomly divided into 4 groups with 10 rabbits in each group. In groupⅠ,the rabbits received CPB and pulmonary arterial perfusion. In group Ⅱ,the rabbits received CPB and pulmonary arterial perfusion with TNF-αAb. In group Ⅲ,the rabbits received CPB only. In group Ⅳ,the rabbits only received sham surgery. Neutrophils count,TNF-α and malondialdehyde (MDA) concentrations of the blood samples from the left and right atrium as well as oxygenation index were examined before and after CPB in the 4 groups. Pathological and ultrastructural changes of the lung tissues were observed under light and electron microscopes. Lung water content,TNF-α mRNA and apoptoticindex of the lung tissues were measured at different time points. Results Compared with group Ⅳ,after CPB,the rabbitsin group Ⅰ to group Ⅲ showed significantly higher blood levels of neutrophils count,TNF-α and MDA(P<0.05),higherTNF-α mRNA expression,apoptosis index and water content of the lung tissues (P<0.05),and significantly lower oxyg-enation index (P<0.05) as well as considerable pathomorphological changes in the lung tissues. Compared with group Ⅱ,after CPB,the rabbits in groups Ⅰ and Ⅲ had significantly higher blood concentrations of TNF-α (5 minutes after aortic declamping,220.43±16.44 pg/ml vs.185.27±11.78 pg/ml,P<0.05;249.99±14.09 pg/ml vs.185.27±11.78 pg/ml,P<0.05),significantly higher apoptosis index (at the time of CPB termination,60.7‰±13.09‰ vs. 37.9‰±7.78‰,P<0.05;59.6‰±7.74‰ vs. 37.9‰±7.78‰,P<0.05),significantly higher blood levels of neutrophils count and MDA (P<0.05),significantly higher TNF-α mRNA expression and water content of the lung tissues (P<0.05),and significantly loweroxygenation index (P<0.05) as well as considerable pathomorphological changes in the lung tissues. Compared with groupⅠ,rabbits in group Ⅲ had significantly higher above parameters (P<0.05) but lower oxygenation index (P<0.05) only at 30 minutes after the start of CPB. Conclusion Pulmonary artery perfusion with TNF-αAb can significantly attenuate inflammatory lung injury and apoptosis of the lung tissues during CPB.

    Release date:2016-08-30 05:47 Export PDF Favorites Scan
  • Effects of High Intra-abdomianl Pressure on Respiration and Hemodynamics in A Porcine Model of Acute Lung Injury

    Objective To investigate the effects of different levels of intra-abdominal pressure ( IAP) on respiration and hemodynamics in a porcine model of acute lung injury( ALI) .Methods A total of 8 domestic swine received mechanical ventilation. Following baseline observations, oleic acid 0. 1mL/kg in 20mL of normal saline was infused via internal jugular vein. Using a nitrogen gas pneumoperitongum, the IAP increased from0 to 15 and 25mmHg, and the groups were named IAP0 , IAP15 and IAP25 , respectively. During the experimental period, hemodynamic parameters including heart rate ( HR) , cardiac output ( CO) , mean arterial pressure( MAP) , central venous pressure( CVP) , intrathoracic blood volume index( ITBVI) and so on were obtained by using thermodilution technique of pulse induced continuous cardiac output( PiCCO) . The esophageal pressure( Pes) was dynamicly monitored by the esophageal catheter. Results Pes and peak airway pressure( Ppeak) increased and static lung compliance( Cstat) decreased significantly in IAP15 and IAP25 groups compared with IAP0 group( all P lt;0. 01) . Transpulmonary pressure( Ptp) showed a downward trend( P gt;0. 05) . PO2 and oxygenation index showed a downward trend while PCO2 showed a upward trend ( P gt;0. 05) . HR and CVP increased significantly, cardiac index( CI) and ITBV index decreased significantly ( all P lt;0. 05) ,MAP didn′t change significantly( P gt;0. 05) . The changes in Pes were negatively correlated with the changes in CI( r = - 0. 648, P = 0. 01) . Conclusion In the porcine model of ALI, Pes increases because of a rise in IAP which decreased pulmonary compliance and CI.

    Release date: Export PDF Favorites Scan
  • Obesity decreases the mortality of acute respiratory distress syndrome: a meta-analysis

    ObjectiveTo evaluate systematically the relationship between obesity and clinical prognosis in acute respiratory distress syndrome (ARDS) patients.MethodsA systematic search was performed in Pubmed, EMBASE, Cochrane databases, Wiley, Ovid, Medline, CNKI, VIP and Wanfang. All studies that reported obesity in the clinical prognosis of ARDS and acute lung injury were included. A meta-analysis was performed using RevMan 5.0 and Stata 10.0.ResultsA total of 28 368 patients from 9 studies were included in this meta-analysis. The combined results showed that obesity was associated with the decreased mortality of ARDS [odds ratio(OR)=0.63, 95% confidence intervals (95%CI) 0.41 to 0.98, P=0.04]. In subgroup analysis, the result showed no obvious relationship between obesity and 28-day mortality in ARDS/ALI (OR=0.92, 95%CI 0.55 to 1.54, P=0.76). However, obesity was associated with lower risk of 60days and 90-day mortality in ARDS/ALI (60-day: OR=0.84, 95%CI 0.75 to 0.94, P=0.002; 90-day: OR=0.38, 95%CI 0.22 to 0.66, P=0.000 5). Compared with normal weight patients with ARDS, hospital length of stay, ICU length of stay, and duration of mechanical ventilation did not differ significantly [hospital length of stay: weighted mean difference (WMD)=3.61, 95%CI –0.36 to 7.57, P=0.07; intensive care unit (ICU) length of stay: WMD=1.52, 95%CI –0.22 to 3.26, P=0.09; duration of mechanical ventilation: WMD=–0.50, 95%CI –2.18 to 1.19, P=0.56], but ventilator-free days was significantly longer in obese patients (WMD=2.68, 95%CI 0.86 to 4.51, P=0.004).ConclusionsObesity is not associated with hospital length of stay, ICU length of stay, and duration of mechanical ventilation in patients with ARDS. However, obesity is associated with a reduction of long-term mortality and increased ventilator-free days in the patients with ARDS. Additional larger randomized controlled studies are needed to confirm the possible role of obesity in the clinical prognosis of ARDS.

    Release date:2017-09-25 01:40 Export PDF Favorites Scan
  • Heparin treatment for animal model with smoke inhalation injury: a meta-analysis

    Objective To systematically review the effectiveness and model building process of heparin treatment for animal model with smoke inhalation injury. Methods Databases including PubMed, EMbase, CBM, CNKI, VIP and WanFang Data were searched to collect animal experiments about the treatment of heparin for animal model with smoke inhalation injury from inception to November 2016. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Then meta-analysis was conducted by RevMan 5.3 software. Results A total of nine studies involving 11 animal experiments were included. The results showed that building animal model with smoke inhalation injury were through burning of cotton towels or pine sawdust by sheep or rats below 40℃. The results of meta-analysis showed that there was no significant difference in mortality rate between two groups (heparin group vs. control group: RR=0.38, 95%CI 0.14 to 1.05, P=0.06; heparin plus DMSO group vs. DMSO group: RR=0.10, 95%CI 0.01 to 1.51, P=0.10). In addition, the pulmonary artery pressure (MD=–3.31, 95%CI –4.51 to –2.11, P<0.000 01), wet to dry weight ratio (MD=–0.90, 95%CI –1.19 to –0.61, P<0.000 01), and lung water content (MD=–1.18, 95%CI –1.67 to –0.70, P<0.000 01) of the experimental group were lower than those in the control group. PaO2/FiO2 after 12 hours (MD=131.00, 95%CI 59.54 to 202.46, P=0.000 3), PaO2/FiO2 after 24 hours (MD=114.00, 95%CI 60.56 to 167.44, P<0.000 1), PaO2/FiO2 after 48 hours (MD=46.00, 95%CI 20.62 to 71.38, P=0.000 4) were higher than those in the control group. However, there was no significant difference in coagulation function between both groups. Conclusion The current evidence shows that the establishment of animal model of smoke inhalation injury is still lack of standard method. Heparin can decrease pulmonary artery pressure and lung water content in animal models with smoke inhalation injury. Due to the limited quality and quantity of included studies, the above conclusions are still needed to be verified by more high quality studies.

    Release date:2017-06-16 02:25 Export PDF Favorites Scan
  • 体外循环中白细胞对肺损伤机制及白细胞过滤的肺保护作用

    肺损伤为体外循环术后常见的并发症之一,血液与体外循环管道接触,能够活化补体、激活白细胞;白细胞激活后黏附于血管内皮细胞或进入肺组织,释放具有趋化作用的炎性介质及代谢产物,如蛋白酶、氧自由基和花生四烯酸等在肺损伤中起着重要作用。动物实验及临床应用白细胞过滤器在体外循环中对白细胞进行过滤,肺血管阻力明显降低,血氧饱和度、动脉血氧分压升高,尤其对术前缺氧越重和体外循环时间越长的患者作用越明显。因此,在体外循环中进行白细胞过滤能够减轻其对肺的损伤,起到肺保护作用。

    Release date:2016-08-30 06:33 Export PDF Favorites Scan
  • Research progress on risk factors for acute aortic dissection complicated with acute lung injury

    Acute lung injury is one of the common and serious complications of acute aortic dissection, and it greatly affects the recovery of patients. Old age, overweight, hypoxemia, smoking history, hypotension, extensive involvement of dissection and pleural effusion are possible risk factors for the acute lung injury before operation. In addition, deep hypothermia circulatory arrest and blood product infusion can further aggravate the acute lung injury during operation. In this paper, researches on risk factors, prediction model, prevention and treatment of acute aortic dissection with acute lung injury were reviewed, in order to provide assistance for clinical diagnosis and treatment.

    Release date:2021-12-27 11:31 Export PDF Favorites Scan
  • Effects of Edaravone on Lung Injury of Severe Acute Pancreatitis in Rats

    Objective To study the effects of edaravone on the lung injury of severe acute pancreatitis (SAP) in rats. Methods Thirty-six SD rats were randomly divided into three groups: normal control group, model group and edaravone group, and SAP was induced by intraductal administration of 5% sodium taurocholate. Edaravone was given in edaravone group, while normal saline was given in normal control group and model group. After operation 6 h rats were executed, and dry/wet weight (D/W) ratio of lung was counted, and malondialdehyde (MDA) content, superoxide dismutase (SOD) activity in serum and lung were detected, respectively. In addition, the levels of tumor necrosis factor-α (TNF-α), interleukin-1, -6 (IL-1, -6) of serum were detected.Results The MDA contentof serum and lung and the levels of TNF-α, IL-1, IL-6 in model group were markedly higher than those in normal control group and edaravone group, but D/W ratio of lung, SOD activity of serum and lung were significantly lower (Plt;0.05). Conclusion Edaravone can alleviate lung injury of rats caused by SAP.

    Release date:2016-09-08 10:50 Export PDF Favorites Scan
  • Protective effect of apocynin on lung injury induced by acute necrotic pancreatitis in rat

    Objective To investigate protective effect of apocynin, the inhibitor of NADPH oxidase Ⅱ (NOX2), on lung injury induced by acute necrotic pancreatitis (ANP) in rat. Methods Forty SPF adult male Wistar rats were randomly divided into 4 groups: shame operation group (SO group, n=10), ANP model group (ANP group, n=12), apocynin treated group (APO group, n=10), and apocynin control group (APO-CON group, n=8). The ANP models were induced by the retrograde injection of 5% sodium taurocholate through the biliopancreatic duct in the ANP group and the APO group. The apocynin was injected at 30 min before the induction of ANP models in the APO group. The pancreas and duodenum of rats were just flipped and the apocynin and the 10% DMSO (2 mL/kg) were injected in the APO-CON group and SO group respectively. All the rats were sacrificed at 12 h after the operation. The blood samples were collected by the inferior vena cava puncture, and the levels of serum amylase and lipase were measured by the auto-chemistry analyzer. The lung tissues were harvested and the integrated optical densities (IODs) of the nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), and NOX2 were detected by the immunohistochemistry assay. The IODs of the myeloperoxidase (MPO), Toll like receptor 4 (TLR4), and CD68 were detected by the immunofluorescence assay. The concentration of malondialdehyde (MDA) and activity of superoxide dismutase (SOD) were tested by the ELISA method. Results The levels of the serum amylase and lipase and the IODs of the NF-κB, TNF-α, NOX2, MPO, TLR4, CD68, and concentration of MDA of the lung tissues in the ANP group were significantly increased as compared with the SO group (P<0.05), these indices in the APO group were significantly decreased as compared with the ANP group (P<0.05). The SOD activity of the lung tissue in the ANP group was significantly decreased as compared with the SO group (P<0.05), which in the APO group was significantly increased as compared with the ANP group (P<0.05). Conclusion Apocynin can ameliorate lung injury induced by ANP through inhibiting activity of NOX2.

    Release date:2018-10-11 02:52 Export PDF Favorites Scan
  • Effects of Ambroxol on Apoptosis in Acute Lung Injury of Rabbits

    Objective To observe the protective effects of ambroxol hydrochloride ( AMB) on rabbit model of acute lung injury ( ALI) induced by oleic acid and explore its mechanisms. Methods The ALI model of rabbit was induced by oleic acid. Twenty-four Japanese white rabbits were divided into three groups randomly, ie. a normal saline group ( NC group) , an ALI group and an ALI plus ambroxol injection group ( AMB group) . The pathological changes and apoptotic index ( AI) in lung tissue, Caspase-3 activity in lung tissue homogenate were observed 6 hours after the intervention. Serum activity of superoxide dismutase ( SOD) and serum levels of malonaldehyde ( MDA) , interleukin-1β( IL-1β) , and tumor necrosis factor-α ( TNF-α) were measured simutanously. Results The pathological injury of lung in the AMB group was milder than that in the ALI group. Both the AI in lung tissue and Caspase-3 activity in homogenate in the AMB group were lower than those in the ALI group significantly ( P lt;0. 01, P lt;0. 05 respectively) , butwere higher than those in the NC group( both P lt; 0. 01) . The activity of SOD in serum measured 6 hours after AMB intervention was higher while the serum levels of MDA, IL-1βand TNF-αin serum were lower ( P lt;0. 01) than those in the ALI group significantly ( all P lt;0. 01) . Conclusions Ambroxol hydrochloride has protective effects on oleic acid-induced acute lung injury. The mechanisms may be related to inhibition of oxidative stress and suppression of cytokines synthesis ( IL-1βand TNF-α) , the activity of the Caspase-3,and the apoptosis of lung tissue.

    Release date:2016-09-14 11:23 Export PDF Favorites Scan
  • Extracellular vesicles derived from bone marrow mesenchymal stem cells improve lung tissue injury in mice with severe acute pancreatitis

    Objective To investigate the effect and potential mechanism of bone marrow mesenchymal stem cells (BMSCs) - derived extracellular vesicles (EVs) on lung tissue injury in mice with severe acute pancreatitis (SAP). Methods A total of 24 specific pathogen free grade male C57BL/6 mice and primary mouse lung microvascular endothelial cells (PMVECs) were selected. The mice were divided into sham group, SAP group, and BMSC group, with 8 mice in each group. The mouse primary PMVECs were divided into model group [sodium taurocholate (NaTC) group], BMSC-EV group, and control group. Extraction and characterization of healthy mouse BMSCs and their derived extracellular vesicles (BMSC-EVs) were conducted. A mouse model of SAP was established, and BMSC-EVs were injected into SAP mice by tail vein or intervened in PMVECs in vitro, to observe the pathological damage of pancreatic and lung tissues, the changes of serum amylase, lipase, and inflammatory factors [tumor necrosis factor α (TNF-α), interleukin-6 (IL-6)], the expression of inflammatory factors of lung tissues and PMVECs, and the endothelial cell barrier related proteins [E-cadherin, ZO-1, intercellular cell adhesion molecule-1 (ICAM-1)], and tight junctions between PMVECs to explore the effects of BMSC-EVs on pancreatic and lung tissues in SAP mice and PMVECs in vitro. Results BMSCs had the potential for osteogenic, chondrogenic, and lipogenic differentiation, and the EVs derived from them had a typical cup-shaped structure with a diameter of 60-100 nm. BMSC-EVs expressed the extracellular vesicle-positive proteins TSG101 and CD63 and did not express the negative protein Calnexin. Compared with the mice in the sham group, the SAP mice underwent significant pathological damage to the pancreas (P<0.05), and their serum amylase, lipase, inflammatory factor IL-6, and TNF-α levels were significantly up-regulated (P<0.05); whereas, BMSC-EVs markedly ameliorated the pancreatic tissue damage in the SAP mice (P<0.05), down-regulated the levels of peripheral serum amylase, lipase, IL-6 and TNF-α (P<0.05), and up-regulated the level of anti-inflammatory factor IL-10 (P<0.05). In addition to this, the SAP mice showed significant lung histopathological damage (P<0.05), higher neutrophils and macrophages infiltration (P<0.05), higher levels of the inflammatory factors TGF-β and IL-6 (P<0.05), as well as reduced barrier protein E-cadherin, ZO-1 expression and elevated expression of ICAM-1 (P<0.05). BMSC-EVs significantly ameliorated lung histopathological injury, inflammatory cells infiltration, inflammatory factor levels, and expression of barrier proteins, and suppressed ICAM-1 expression (P<0.05). In the in vitro PMVECs experiments, it was found that intercellular tight junctions were broken in the NaTC group, and the levels of inflammatory factors TNF-α and IL-6 were significantly up-regulated (P<0.05), the protein expression of E-cadherin and ZO-1 was significantly down-regulated (P<0.05), and the expression of ICAM-1 was significantly up-regulated (P<0.05). BMSC-EVs significantly improved intercellular tight junctions in the NaTC group and inhibited the secretion of TNF-α and IL-6 (P<0.05), up-regulated the expression of the barrier proteins E-cadherin and ZO-1, and down-regulated the expression of ICAM-1 (P<0.05). Conclusion BMSC-derived EVs ameliorate lung tissue injury in SAP mice by restoring the lung endothelial cell barrier and inhibiting inflammatory cell infiltration.

    Release date:2024-11-27 02:45 Export PDF Favorites Scan
18 pages Previous 1 2 3 ... 18 Next

Format

Content