More and more relevant research results show that anatomical segmentectomy has the same effect as traditional lobectomy in the surgical treatment of early-stage non-small cell lung cancer (diameter<2.0 cm). Segmentectomy is more difficult than lobotomy. Nowadays, with the promotion of personalization medicine and precision medicine, three-dimensional technique has been widely applied in the medical field. It has advantages such as preoperative simulation, intraoperative positioning, intraoperative navigation, clinical teaching and so on. It plays a key role in the discovery of local anatomical variation of pulmonary segment. This paper reviewed the clinical application of three-dimensional technique and briefly described the clinical application value of this technique in segmentectomy.
ObjectiveTo introduce a new method for identifying intersegmental planes during thoracoscopic segmentectomy using pulmonary circulation single-blocking in the target segment. MethodsTo retrospectively analyze the clinical data of 83 patients who underwent thoracoscopic pulmonary segmentectomy from January 2019 to March 2020 using the pulmonary circulation single-blocking method. There were 33 males and 50 females, with a median age of 54 (46-65) years, and they were divided into a single vein group (SVG, n=31) and a single artery group (SAG, n=52), and the clinical data of two groups were compared. ResultsThe intersegmental planes were identified successfully in both groups and there were no statistically significant differences between the two groups in terms of intersegmental plane management (P=0.823), operating time (P=0.786), intraoperative blood loss (P=0.775), chest drainage time (P=0.659), postoperative hospital stay (P=0.824) or the incidence of postoperative complications (P=1.000). ConclusionThe use of pulmonary circulation single-blocking for intersegmental plane identification during thoracoscopic segmentectomy is safe and feasible, and the intersegmental plane can be satisfactorily identified by the single-blocking of arteries or veins.
ObjectiveTo investigate the clinical effect of 3D computed tomography bronchial bronchography and angiography (3D-CTBA) and guidance of thoracoscopic anatomic pulmonary segmentectomy by Mimics software system. MethodsA retrospective analysis was performed on patients who underwent thoracoscopic segmentectomy in the Department of Thoracic Surgery of Affiliated People's Hospital of Jiangsu University from June 2020 to December 2022. The patients who underwent preoperative 3D-CTBA using Materiaise's interactive medical image control system (Mimics) were selected as an observation group, and the patients who did not receive 3D-CTBA were selected as a control group. The relevant clinical indicators were compared between the two groups. ResultsA total of 59 patients were included, including 29 males and 30 females, aged 25-79 years. There were 37 patients in the observation group, and 22 patients in the control group. The operation time (163.0±48.7 min vs. 188.8±43.0 min, P=0.044), intraoperative blood loss [10.0 (10.0, 20.0) mL vs. 20.0 (20.0, 35.0) mL, P<0.001], and preoperative puncture localization rate (5.4% vs. 31.8%, P=0.019) in the observation group were better than those in the control group. There was no statistically significant difference in the thoracic tube placement time, thoracic fluid drainage volume, number of intraoperative closure nail bin, postoperative hospital stay, or postoperative air leakage incidence (P>0.05) between the two groups. ConclusionFor patients who need to undergo anatomical pulmonary segmentectomy, using Mimics software to produce 3D-CTBA before surgery can help accurately identify pulmonary arteriovenous anatomy, reduce surgical time and intraoperative blood loss, help to determine the location of nodules and reduce invasive localization before surgery, and alleviate patients' pain, which is worthy of clinical promotion.
Objective To verify the feasibility and accuracy of the "lung surface intersegmental constant proportion landmarks", developed by our center, in identifying intersegmental planes during pulmonary segmentectomy. MethodsWe prospectively enrolled the patients who planned to receive thoracoscopic segmentectomy in West China Hospital of Sichuan University and The Third People's Hospital of Chengdu from September 2021 to October 2021. We took a relatively objective and feasible method, intravenous injection of indocyanine green, in identifying intersegmental planes as standard control. We intraoperatively judged the consistency between "lung surface intersegmental constant proportion landmarks" and intravenous injection of indocyanine green in identifying intersegmental planes. We discerned main landmarks of intersegmental plane by the constant proportion segment module, which was built based on the "lung surface intersegmental constant proportion landmarks", as well as distinguished the planes with discrepant fluorescence by peripheral intravenous indocyanine green injection. When the distance between the landmarks determined by the "ung surface intersegmental constant proportion landmarks" and the segmental boundaries displayed by indocyanine green fluorescence staining was ≤1 cm, the landmarks were judged to be consistent with the planes with discrepant fluorescence. As long as one of the landmarks was judged to be consistent, the method was considered to be feasible and accurate. Results A total of 21 patients who underwent thoracoscopic segmentectomy were enrolled, with 5 male and 16 female patients. The median age was 55 years, ranging from 34 to 76 years. A total of 11 patients received left-side surgery, while 10 patients received right-side surgery. In the operations of 21 pulmonary segmentectomies, at least one intersegmental landmark determined by the "lung surface intersegmental constant proportion landmarks" was consistent with the intersegmental plane determined by indocyanine green fluorescence staining in each patient. ConclusionThe intersegmental landmarks determined by the "lung surface intersegmental constant proportion landmarks" are consistent with that determined by indocyanine green fluorescence staining. The method of "lung surface intersegmental constant proportion landmarks" is feasible and accurate in identifying intersegmental planes during pulmonary segmentectomy.
ObjectiveTo analyze the effect of indocyanine green (ICG) fluorescence dual-visualization technique on evaluating tumor margins during the thoracoscopic segmentectomy. MethodsA total of 36 patients who underwent thoracoscopic anatomical segmentectomy using ICG fluorescence dual-visualization technique in our hospital from December 2020 to June 2021 were retrospectively included. There were 15 males and 21 females aged from 20 to 69 years. The clinical data of the patients were retrospectively analyzed. ResultsThe ICG fluorescence dual-visualization technique clearly showed the position of lung nodules and the plane boundary line between segments during the operation. There was no ICG-related complication. The average operation time was 98.6±21.3 min, and the average intraoperative bleeding amount was 47.1±35.3 mL, the average postoperative drainage tube placement time was 3.3±2.8 d, the average postoperative hospital stay was 5.4±1.8 d, and the average tumor resection distance was 2.6±0.7 cm. There was no perioperative period death, and one patient suffered a persistent postoperative air leak. ConclusionThe ICG fluorescence dual-visualization technique is safe and feasible for evaluating the tumor margins during thoracoscopic segmentectomy. It simplifies the surgical procedure, shortens the operation time, ensures sufficient tumor margins, and reserves healthy pulmonary parenchyma to the utmost extent, providing reliable technical support for thoracoscopic anatomical segmentectomy.
Objective To explore the feasibility and accuracy of using indocyanine green fluorescence (ICGF) to identify the intersegmental plane after ligation of the target pulmonary vein during thoracoscopic segmentectomy. Methods From December 2022 to June 2023, the patients with pulmonary nodules undergoing video-assisted thoracoscopic anatomical segmentectomy with intersegmental plane displayed using ICGF after ligation of the target pulmonary vein by the same medical team in our hospital were collected. Preoperative three-dimensional reconstruction was used to identify the target segment where the pulmonary nodule was located and the anatomical structure of the arteries, veins, and bronchi in the target segment. The intersegmental plane was first determined by the inflation-deflation method after the target pulmonary vein was ligated during the operation. During the waiting period, the target artery and bronchus could be separated but not cut off. The inflation-deflation boundary was marked by electrocoagulation, and then ICGF was injected via peripheral vein to identify the intersegmental plane again, and the consistency of the two intersegmental planes was finally evaluated. Results Finally 32 patients were collected, including 14 males and 18 females, with an average age of 58.69±11.84 years, ranging from 25 to 76 years. The intersegmental plane determined by inflation-deflation method was basically consistent with ICGF method in all patients. All the 32 patients successfully completed uniportal thoracoscopic segmentectomy without ICGF-related complications or perioperative death. The average operation time was 98.59±20.72 min, the average intraoperative blood loss was 45.31±35.65 mL, and the average postoperative chest tube duration was 3.50±1.16 days. The average postoperative hospital stay was 4.66±1.29 days, and the average tumor margin width was 26.96±5.86 mm. Conclusion The ICGF can safely and accurately identify the intersegmental plane by target pulmonary venous preferential ligation in thoracoscopic segmentectomy, which is a useful exploration and important supplement to the simplified thoracoscopic anatomical segmentectomy.
ObjectiveTo evaluate the efficacy of thoracoscopic complex segmentectomy for stageⅠnon-small cell lung cancer (NSCLC).MethodsWe retrospectively reviewed the perioperative clinical data of patients with stageⅠNSCLC who underwent thoracoscopic complex segmentectomy (n=58) or simple segmentectomy (n=33) between January 2017 and March 2020 in our hospital. There were 36 males and 55 females with a median age of 57 years (range: 50-66 years). The clinical data of the two groups were compared.ResultsThere were no significant differences between the two groups in characteristics including age, sex, weight, comorbidities, preoperative pulmonary function, dominant composition of tumor, tumor histology and size, overall complications, estimated blood loss, prolonged air leakage, length of hospital stay, length of drainage, surgical margin distance or number of dissected lymph nodes. Only the operation time and number of staples for making intersegmental plane were significantly different between the two groups (P<0.05). There was no perioperative death in both groups.ConclusionThoracoscopic complex segmentectomy is a feasible and safe technique for stageⅠNSCLC.
ObjectiveTo explore the safety and short-term efficacy of uniportal and three-port video-assisted thoracoscopic surgery (VATS) anatomical segmentectomy for pulmonary nodules. MethodsThe clinical data of 225 patients with consecutive VATS anatomic segmentectomy by the same surgeon in Xuzhou Central Hospital between December 2019 and February 2022 was retrospectively reviewed. There were 85 males and 140 females with an average age of 57.3±11.6 years. These patients were divided into an uniportal VATS group (128 patients) and a three-port VATS group (97 patients) according to the surgical procedures. Single-direction anatomical procedure was utilized in the uniportal VATS group. The operation time, blood loss during the surgery, number of dissected lymph nodes, duration and volume of chest drainage, incidence of complications, and postoperative hospital stay of the two groups were compared. ResultsThere was no conversion to thoracotomy, addition of surgical ports, or mortality in this cohort, with tumor-negative surgical margins. The postoperative pathological staining confirmed 2 (0.9%) patients of lymph node metastasis (pN1) and 4 (1.8%) patients of adenocarcinoma with micropapillary component. As compared with the three-port VATS group, patients in the uniportal VATS group had shorter operation time (115.6±54.7 min vs. 141.5±62.8 min, P=0.001), less intraoperative blood loss (77.2±49.6 mL vs. 96.9±98.1 mL, P=0.050), less total thoracic drainage [394.0 (258.8, 580.0) mL vs. 530.0 (335.0, 817.5) mL, P=0.010], and shorter postoperative hospital stay (7.7±3.7 d vs. 8.7±3.5 d, P=0.031). Both groups showed similar stations and numbers of dissected lymph nodes, incidence of operation-related complications, duration of chest tube drainage, and the drainage volume in the first and second postoperative days (P>0.05). No tumor recurrence or metastasis was recorded in this cohort during the follow-up of 11 (1-26) months. ConclusionSingle-direction uniportal VATS anatomical segmentectomy is safe and feasible for the treatment of pulmonary nodules, with better short-term efficacy as compared with the three-port VATS procedure, including shorter operation time, less intraoperative blood loss and thoracic drainage. However, further studies are needed to elucidate the precise indications of segmentectomy for lung cancer.
Abstract: The principles of 2010 National Comprehensive Cancer Network(NCCN) clinical practice guidelines in non-small cell lung cancer address that anatomic pulmonary resection is preferred for the majority of patients with non-small cell lung cancer and video-assisted thoracic surgery (VATS) is a reasonable and acceptable approach for patients with no anatomic or surgical contraindications. By reviewing the literatures on general treatment, pulmonary segmentectomy, pulmonary function reserve, and the anatomic issue of early stage non-small cell lung cancer surgery, the feasibility and reliability of thoracoscopic pulmonary segmentectomy are showed.