west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "脱钙骨基质" 19 results
  • EXPERIMENTAL COMPARATIVE STUDY ON OSTEOGENIC ACTIVITY BETWEEN FREEZE-DRIED TISSUE ENGINEERED BONE AND TISSUE ENGINEERED BONE

    Objective Tissue engineered bone (TEB) lacks of an effective and feasible method of storage and transportation. To evaluate the activity of osteogenesis and capabil ity of ectopic osteogenesis for TEB after freeze-dried treatment in vitro and in vivo and to explore a new method of preserving and transporting TEB. Methods Human bone marrow mesenchymal stem cells (hBMSCs) and decalcified bone matrix (DBM) were harvested from bone marrow and bone tissue of the healthy donators. TEB was fabricated with the 3rd passage hBMSCs and DBM, and they were frozen and dried at extremely low temperatures after 3, 5, 7, 9, 12, and 15 days of culture in vitro to obtain freeze-dried tissue engineered bone (FTEB). TEB and FTEB were observed by gross view and scanning electron microscope (SEM). Western blot was used to detect the changes of relative osteogenic cytokines, including bone morphogenetic protein 2 (BMP-2), transforming growth factor β1 (TGF-β1), and insul in-l ike growth factor 1 (IGF-1) between TEB and FTEB. The ectopic osteogenesis was evaluated by the methods of X-ray, CT score, and HE staining after TEB and FTEB were transplanted into hypodermatic space in athymic mouse. Results SEM showed that the cells had normal shape in TEB, and secretion of extracellular matrix increased with culture time; in FTEB, seeding cells were killed by the freeze-dried process, and considerable extracellular matrix were formed in the pore of DBM scaffold. The osteogenic cytokines (BMP-2, TGF-β1, and IGF-1) in TEB were not decreased after freeze-dried procedure, showing no significant difference between TEB and FTEB (P gt; 0.05) except TGF-β1 15 days after culture (P lt; 0.05). The ectopic osteogenesis was observed in TEB and FTEB groups 8 and 12 weeks after transplantation, there was no significant difference in the calcified level of grafts between TEB and FTEB groups by the analysis of X-ray and CT score. On the contrary, there was no ectopic osteogenesis in group DBM 12 weeks after operation. HE staining showed that DBM scaffold degraded and disappeared 12 weeks after operation. Conclusion The osteogenic activity of TEB and FTEB is similar, which provides a new strategy to preserve and transport TEB.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • EFFECTS OF DEMINERALIZED BONE MATRIX MODIFIED WITH TYPE II CADHERIN ECTODOMAIN ON ADHESION AND OSTEOGENIC DIFFERENTIATION OF BMSCs

    Objective To evaluate the adhesion, prol iferation and osteogenic differentiation of rabbit BMSCs after cultured on freeze-dried demineral ized bone matrix (FDBM) modified with type II cadherin ectodomain (Cad- II). Methods BMSCs isolated from 10 Japanese white rabbits (male and female, 4-week-old, 0.61-0.88 kg) were cultured. The second generation of BMSCs (cell density 1 × 106 /mL) were seeded onto the Cad-II modified allogenic FDBM (experimental group) and only FDBM (control group) respectively, and then cocultured in vitro. The densities of seeded cells, the adhesion rate and their ALP activity were measured. The complex was observed through inverted phase contrast microscope and scanning electron microscope to evaluate the interaction between cells and FDBM. Another group of second generation of BMSCs (cell density 5 × 105 /mL) were seeded onto the Cad-II modified FDBM (experimental group) and only FDBM (control group) respectively, and then cocultured in vitro too. The ALP activity and osteocalcin immunohistochemical was measured. Results There was no significant difference in cell prol iferation between experimental group and control group. The adhesion rate of cells in the experimental group was 87.41% ± 5.19%, higher than that in the the control group 35.56% ± 1.75% (P lt; 0.01); the densities of seeded cells reached 5.0 × 105, showing significant difference compared with the control group (2.6 × 104, P lt; 0.05). Inverted phase contrast microscope showed that in the experimental group, more cultured BMSCs pasted in the hole and edge of the scaffold than that in the control group. HE staining showed the densities of seeded cells in the experimental group was higher than that in the control group. Scanning electron microscope showed that in the experimental group, a lot of cultured BMSCs adhered, spreaded in the scaffold, in the control group only a few BMSCs unevenly distributed in the scaffold. After 7 days of culture, the cultured BMSCs on modified FDBM expressed higher ALP activity; after 14 days of culture, the ALP activity (29.33 ± 1.53) was higher than that cultured on unmodified FDBM (18.31 ± 1.32), the positive rates of osteocucl in were 83% ± 7% in the experimental group and 56% ± 7% in the control group, showing significant difference (P lt; 0.01). Conclusion Cad-II enhanced cell adhesion to FDBM and promoted BMSCs differentiate to osteoblast, but no obvious effects were observed in cell prol iferation.

    Release date:2016-09-01 09:06 Export PDF Favorites Scan
  • Preparation and bone repair capability of a new plastic bone filler material

    Objective To prepare a new plastic bone filler material with adhesive carrier and matrix particles derived from human bone, and evaluate its safety and osteoinductive ability through animal tests. MethodsThe human long bones donated voluntarily were prepared into decalcified bone matrix (DBM) by crushing, cleaning, and demineralization, and then the DBM was prepared into bone matrix gelatin (BMG) by warm bath method, and the BMG and DBM were mixed to prepare the experimental group’s plastic bone filler material; DBM was used as control group. Fifteen healthy male thymus-free nude mice aged 6-9 weeks were used to prepare intermuscular space between gluteus medius and gluteus maximus muscles, and all of them were implanted with experimental group materials. The animals were sacrificed at 1, 4, and 6 weeks after operation, and the ectopic osteogenic effect was evaluated by HE staining. Eight 9-month-old Japanese large-ear rabbits were selected to prepare 6-mm-diameter defects at the condyles of both hind legs, and the left and right sides were filled with the materials of the experimental group and the control group respectively. The animals were sacrificed at 12 and 26 weeks after operation, and the effect of bone defect repair were evaluated by Micro-CT and HE staining. Results In ectopic osteogenesis experiment, HE staining showed that a large number of chondrocytes could be observed at 1 week after operation, and obvious newly formed cartilage tissue could be observed at 4 and 6 weeks after operation. For the rabbit condyle bone filling experiment, HE staining showed that at 12 weeks after operation, part of the materials were absorbed, and new cartilage could be observed in both experimental and control groups; at 26 weeks after operation, the most of the materials were absorbed, and large amount of new bone could be observed in the 2 groups, while new bone unit structure could be observed in the experimental group. Micro-CT observation showed that the bone formation rate and area of the experimental group were better than those of the control group. The measurement of bone morphometric parameters showed that the parameters at 26 weeks after operation in both groups were significantly higher than those at 12 weeks after operation (P<0.05). At 12 weeks after operation, the bone mineral density and bone volume fraction in the experimental group were significantly higher than those in the control group (P<0.05), and there was no significant difference between the two groups in trabecular thickness (P>0.05). At 26 weeks after operation, the bone mineral density of the experimental group was significantly higher than that of the control group (P<0.05). There was no significant difference in bone volume fraction and trabecular thickness between the two groups (P>0.05). Conclusion The new plastic bone filler material is an excellent bone filler material with good biosafety and osteoinductive activity.

    Release date:2023-03-13 08:33 Export PDF Favorites Scan
  • Performance evaluation of two antigen-extracted xenogeneic ostein and experimental study on repairing skull defects in rats

    ObjectiveTo evaluate the physical and chemical properties, immunogenicity, and osteogenesis of two antigen-extracted xenogeneic bone scaffolds—decalcified bone matrix (DBM) and calcined bone.MethodsBy removing the inorganic and organic components of adult pig femus, xenogeneic DBM and calcined bone were prepared respectively. The density and pH value of the two materials were measured and calculated, the material morphology and pore diameter were observed by scanning electron microscope, and the surface contact angle was measured by automatic contact angle measuring instrument. The safety, osteogenic activity, and immunogenicity of the two materials were evaluated by cytotoxicity test, osteoblast proliferation test, DNA residue test, and human peripheral blood lymphocyte proliferation test. The two materials were implanted into the 5 mm full-thickness skull defect of 6-week-old male Sprague Dawley rats (the blank control group was not implanted with materials). The materials were taken at 4 and 8 weeks after operation, the repair effect of the materials on the rat skull was observed and evaluated by gross observation, Micro-CT scanning, and HE staining observation.ResultsCompared with calcined bone, DBM has lower density and poor hydrophilicity; the pH value of the two materials was 5.5-6.1, and the pore diameter was 160-800 μm. The two materials were non-cytotoxic and could promote the proliferation of osteoblasts. The absorbance (A) values of osteoblast proliferation at 1, 4, and 7 days in the DBM group were significantly higher than those in the calcined bone group (P<0.05). The DNA residues of the two materials were much lower than 50 ng/mg dry weight, and neither of them could stimulate the proliferation and differentiation of human peripheral blood lymphocytes. The results of animal experiments in vivo showed that the bone volume/total volume (BV/TV) in DBM group and calcined bone group were significantly higher than that in blank control group at 4 weeks after operation (P<0.05), and that in calcined bone group was significantly higher than that in DBM group (P<0.05); at 8 weeks after operation, there was no significant difference in BV/TV between groups (P>0.05). HE staining showed that at 4 and 8 weeks after operation, the defect in the blank control group was filled with fibrous connective tissue, the defect was obvious, and no bone growth was found; the defect in DBM group and calcined bone group had been repaired to varying degrees, and a large number of new bone formation could be seen. The material degradability of DBM group was better than that of calcined bone group.ConclusionThe physical and chemical properties and degradability of the two kinds of xenogeneic bone scaffolds were slightly different, both of them have no immunogenicity and can promote the repair and reconstruction of skull defects in rats.

    Release date:2021-10-28 04:29 Export PDF Favorites Scan
  • HISTOPATHOLOGICAL CHANGES OF THREE KINDS OF BONE GRAFTS IN VIVO

    Objective To evaluate the tissue response induced by three kinds of bone transplantation materials implanted in rat so as to provide proper evidence for their cl inical appl ication. Methods Thirty-six healthy mature Sprague- Dawly mice, weighing from 229 g to 358 g, were randomly assigned to groups A and B (n=18). Three kinds of materials wereimplanted into muscles of rats. Calcium sulfate (CS) granular preparations and allogeneic demineral ized bone matrix (DBM) were transplanted into the left (group A1) and right (group A2) thigh muscle pouches of group A. Respectively, whereas xenogenic DBM were transplanted into the left (group B1) thigh muscle pouches of group B and the right (group B2) sites were taken as control without implant. The samples (n=6) were collected to make the observation of gross and histology and to analyze histological score after 2, 4, and 6 weeks. Results The gross observation: implanted materials were gradually absorbed at late stage in group A1. No obvious degradation and absorption, but fibrosis of tissues were observed in group A2 and B1. The inflammatory reactions were more severe in groups A2 and B1. In group B2, only the changes of scar were seen at operative site. The histological observation: no obvious inflammatory reactions were seen in group A1, CS were gradually absorbed and completely absorbed at 6 weeks, while fibrosis of tissues increased at late stage. Inflammatory reactions in group A2 and group B1 were alleviated gradually, no obvious absorption and degradation were observed. The different two DBM could induce granulation tissues and bone formation at different sites and secondary fibrosis with no obvious immune response was observed. In group B2, there was an increase in collagen fiber density and angiogenesis at late stage. The scores of inflammatory infiltration were significantly higher in groups A2, B1 than in groups A1, B2 (P lt; 0.05), and the scores of fibrosis was larger in groups A1, A2 and B1 than in group B2 (P lt; 0.05). Conclusion CS has rapid dissolution and good biocompatibil ity. It is a good replaceable packing materials of bone defects in some upper l imb’s or acute bone fracture. Both of two DBM have biocompatibil ity and osteoinductive potential, which dissolution are very slow. Due to these capacity, they can be served as an ideal materials in treatment of lower l imb’s bone defect and nonunion.

    Release date:2016-09-01 09:06 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON PROMOTING BONE CONSOLIDATION BY USING PLATELET-RICH PLASMA AND DECALCIFIED BONE MATRIX DURING DISTRACTION OSTEOGENESIS

    Objective To investigate whether combining use of platelet-rich plasma (PRP) and decalcified bone matrix (DBM) has synergistic action on promoting bone consol idation and heal ing. Methods Forty male New Zealand rabbits (weighing 2.2-2.8 kg) were randomly divided into 4 groups (n=10). The whole blood was extracted from the central aural artery and PRP was prepared with the Landesberg’s method. An 1 cm-defect was made below the tibiofibular joint of the lefttibia through osteotomy. In group A, defect was repaired by distraction osteogenesis (1 cm); in group B, defect was repaired with 0.5 cm DBM and then by distraction osteogenesis (0.5 cm); in group C, defect was repaired by distraction osteogenesis (1 cm) and local injection of 1 mL PRP; in group D, defect was repaired by 0.5 cm DBM combined with 1 mL PRP and then by distraction osteogenesis (0.5 cm). Then lengthening started at 7 days after operation, at a rate of 1 mm/day and 0.5 mm every time for 10 days (groups A and C) or for 5 days (groups B and D). After the lengthening, the consolidation was performed. The X-ray films were taken at 0, 12, 17, 27, and 37 days after operation. At 37 days after operation, the tibial specimens were harvested for Micro-CT scanning, three-dimensional reconstruction and biomechanical test. Results The X-ray films showed that new bone formation in groups B and C was obviously better than that in groups A and D at 37 days. The bone mineral density (BMD), bone mineral content (BMC), and bone volume fraction (BVF) of groups B and C were significantly higher than those of groups A and D (P lt; 0.05); the BMD and BMC of group C were significantly higher than those of group B (P lt; 0.05); the BVF had no significant difference between groups B and C (P gt; 0.05). There was no significant difference in BMD, BMC, and BVF between groups A and D (P gt; 0.05). The trabecula number (Tb.N) of group C was significantly more than that of other groups (P lt; 0.05), and the trabecula spacing (Tb.Sp) of group C was significantly smaller than that of other groups (P lt; 0.05), but no significant differencewas found among other groups (P gt; 0.05). There was no significant difference in the trabecula thickness among 4 groups (P gt; 0.05). The ultimate angular displacement had no significant difference among 4 groups (P gt; 0.05). The maximum torque of groups B and C was significantly higher than that of groups A and D (P lt; 0.05); the maximum torque of group C was significantly higher than that of group B (P lt; 0.05); no significant difference was found between groups A and D (P gt; 0.05). Conclusion In the rabbit bone defect/lengthening model, local injection of PRP can enhance bone consol idation effectively during consol idation phase. In normal distraction rate, DBM can promote bone consol idation during distraction osteogenesis. In the early stage of distraction osteogenesis, combining use of DBM and PRP can not further promote bone consolidation and healing.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
  • FABRICATION AND ANALYSIS OF A NOVEL TISSUE ENGINEERED COMPOSITE BIPHASIC SCAFFOLD FOR ANNULUS FIBROSUS AND NUCLEUS PULPOSUS

    Objective To fabricate a novel composite scaffold with acellular demineralized bone matrix/acellular nucleus pulposus matrix and to verify the feasibility of using it as a scaffold for intervertebral disc tissue engineering through detecting physical and chemical properties. Methods Pig proximal femoral cancellous bone rings (10 mm in external diameter, 5 mm in internal diameter, and 3 mm in thickness) were fabricated, and were dealed with degreasing, decalcification, and decellularization to prepare the annulus fibrosus phase of scaffold. Nucleus pulposus was taken from pig tails, decellularized with Triton X-100 and deoxycholic acid, crushed and centrifugalized to prepare nucleus pulposus extracellular mtrtix which was injected into the center of annulus fibrosus phase. Then the composite scaffold was freeze-dryed, cross-linked with ultraviolet radiation/carbodiimide and disinfected for use. The scaffold was investigated by general observation, HE staining, and scanning electron microscopy, as well as porosity measurement, water absorption rate, and compressive elastic modulus. Adipose-derived stem cells (ADSCs) were cultured with different concentrations of scaffold extract (25%, 50%, and 100%) to assess cytotoxicity of the scaffold. The cell viability of ADSCs seeded on the scaffold was detected by Live/Dead staining. Results The scaffold was white by general observation. The HE staining revealed that there was no cell fragments on the scaffold, and the dye homogeneously distributed. The scanning electron microscopy showed that the pore of the annulus fibrosus phase interconnected and the pore size was uniform; acellular nucleus pulposus matrix microfilament interconnected forming a uniform network structure, and the junction of the scaffold was closely connected. The novel porous scaffold had a good pore interconnectivity with (343.00 ± 88.25) µm pore diameter of the annulus fibrosus phase, 82.98% ± 7.02% porosity and 621.53% ± 53.31% water absorption rate. The biomechanical test showed that the compressive modulus of elasticity was (89.07 ± 8.73) kPa. The MTT test indicated that scaffold extract had no influence on cell proliferation. Live/Dead staining showed that ADSCs had a good proliferation on the scaffold and there was no dead cell. Conclusion Novel composite scaffold made of acellular demineralized bone matrix/acellular nucleus pulposus matrix has good pore diameter and porosity, biomechanical properties close to natural intervertebral disc, non-toxicity, and good biocompatibility, so it is a suitable scaffold for intervertebral disc tissue engineering.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • A PRELIMINARY STUDY OF HIGH VISCOUS CHITOSAN/GLYCEROL PHOSPHATE WITH DEMINERALIZED BONE MATRIX TO REPAIR CARTILAGE DEFECTS IN RABBITS

    Objective To evaluate the effect of implantation of the complex of high viscous chitosan/glycerol phosphate with demineral ized bone matrix (HV-C/GP-DBM) in repairing cartilage defects of rabbits. Methods HV-C/ GPDBM was prepared by compounding HV-C/GP and DBM by 2:1 (W/W). Twenty-four 34-week-old New Zealand white adult rabbits, weighing 3.5-4.5 kg, were included. A bit with the diameter of 3.5 mm was used to drill 3-cm-deep holes in both sides of femoral condyle to make cartilage defects. The complex of HV-C/GP-DBM was then injected into the right holes as the experimental group and the left ones serve as the control group. The rabbits were killed at 4, 8 and 16 weeks after theoperation, respectively. The obtained specimens were observed macroscopically, microscopically and histologically. According to the International Cartilage Repair Society Histological Scoring (ICRS), the effect of cartilage repair was assessed at 16 weeks postoperatively. Results At 4-8 weeks postoperatively, in the experimental group, the defects were filled with hyal ine cartilage-l ike tissues; the majority of chitosan degradated; and the DBM particles were partly absorbed. However, in the control group, there were small quantities of discontinuous fibrous tissues and maldistributed chondrocytes at the border and the bottom of the defects. At 16 weeks postoperatively, 6 joints in the experimental group had smooth surface, and the defects were basically repaired by hyal ine cartilage-l ike tissues. The newly-formed tissues integrated well with the surrounding area. Under the cartilage, the new bone formation was still active and some DBM particles could be seen. However, the defects in the control group were repaired by fibrous tissues. The result of histological scoring of the specimens at 16 weeks showed that a total of 6 aspects including formation of chondrocytes and integration with the surrounding cartilages were superior in the experimental group to those in the control group, and there were significant differences between the two groups (P lt; 0.05). Conclusion The biodegradable and injectable complex of HV-C/GP-DBM with good histocompatibil ity and non-toxic side effects can repair cartilage defects and is a promising biomaterial for cartilage defect repair.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • ABSTRACTSTHE EXPERIMENTAL CTUDY OF THE REPAIR OF LONG BONE DEFECTS BY CCOMBINED GRAFTING OF HOMOGENOUS DECALCIFIED BONE MATRIX(DBM) WITH CENTRALLY ENVELOPED VASCULARIZED PERIOSTEUM

    The repair of the long bone defects by combined grafting of homogenous deealcified bene matrix(DBM ) with centrally enveloped vascularized periosteum Was reported as a new techniqe. Theroentgenograms,bone mineral count and histologic examination were done. The results showed thatthis method was beneficial and had better effect on prornoting healing of the long bene defeets fromone stage operation The oporative proeedure was described on deatil It was considered that the homogenous DBM ...

    Release date:2016-09-01 11:18 Export PDF Favorites Scan
  • Effect of demineralized bone matrix modified by laminin α4 chain functional peptide on H-type angiogenesis and osteogenesis to promote bone defect repair

    ObjectiveBased on the cell-extracellular matrix adhesion theory in selective cell retention (SCR) technology, demineralized bone matrix (DBM) modified by simplified polypeptide surface was designed to promote both bone regeneration and angiogenesis.MethodsFunctional peptide of α4 chains of laminin protein (LNα4), cyclic RGDfK (cRGD), and collagen-binding domain (CBD) peptides were selected. CBD-LNα4-cRGD peptide was synthesized in solid phase and modified on DBM to construct DBM/CBD-LNα4-cRGD scaffold (DBM/LN). Firstly, scanning electron microscope and laser scanning confocal microscope were used to examine the characteristics and stability of the modified scaffold. Then, the adhesion, proliferation, and tube formation properties of CBD-LNα4-cRGD peptide on endothelial progenitor cells (EPCs) were detected, respectively. Western blot method was used to verify the molecular mechanism affecting EPCs. Finally, 24 10-week-old male C57 mice were used to establish a 2-mm-length defect of femoral bone model. DBM/LN and DBM scaffolds after SCR treatment were used to repair bone defects in DBM/LN group (n=12) and DBM group (n=12), respectively. At 8 weeks after operation, the angiogenesis and bone regeneration ability of DBM/LN scaffolds were evaluated by X-ray film, Micro-CT, angiography, histology, and immunofluorescence staining [CD31, endomucin (Emcn), Ki67].ResultsMaterial related tests showed that the surface of DBM/LN scaffold was rougher than DBM scaffold, but the pore diameter did not change significantly (t=0.218, P=0.835). After SCR treatment, DBM/LN scaffold was still stable and effective. Compared with DBM scaffold, DBM/LN scaffold could adhere to more EPCs after the surface modification of CBD-LNα4-cRGD (P<0.05), and the proliferation rate and tube formation ability increased. Western blot analysis showed that the relative expressions of VEGF, phosphorylated FAK (p-FAK), and phosphorylated ERK1/2 (p-ERK1/2) proteins were higher in DBM/LN than in DBM (P<0.05). In the femoral bone defect model of mice, it was found that mice implanted with DBM/LN scaffold had stronger angiogenesis and bone regeneration capacity (P<0.05), and the number of CD31hiEmcnhi cells increased significantly (P<0.05).ConclusionDBM/LN scaffold can promote the adhesion of EPCs. Importantly, it can significantly promote the generation of H-type vessels and realize the effective coupling between angiogenesis and bone regeneration in bone defect repair.

    Release date:2021-01-07 04:59 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content