Objective To investigate the distribution of the perforating branches artery of distally-based flap of sural nerve nutrient vessels and its clinical application. Methods The origins and distribution of perforating branchesartery of distally-based flap were observed on specimens of 30 adult cadavericlow limbs by perfusing red gelatin to dissect the artery.Among the 36 cases, there were 21 males, 15 females. Their ages ranged from 6 to 66, 35.2 in average. The defect area was 3.5 cm×2.5 cm to 17.0 cm×11.0 cm. The flap taken ranged from 4 cm×3 cm to 18 cm×12 cm. Results The perforating branches artery of distally-based flap had 2 to 5 branches and originated from the heel lateral artery, the terminal perforating branches of peroneal artery(diameters were 0.6±0.2 mm and 0.8±0.2 mm, 1.0±1.3 cm and 2.8±1.0 cm to the level of cusp lateral malleolus cusp).The intermuscular septum perforating branches of peroneal artery had 0 to 3 branches. Their rate of presence was 96.7%,66.7% and 20.0% respectively(the diameters were 0.9±0.3, 1.0±0.2 and 0.8±0.4 mm, andtheir distances to the level of cusp of lateral malleolus were 5.3±2.1, 6.8±2.8 and 7.0±4.0 cm). Those perforating branches included fascia branches, cutaneous branches, nerve and vein nutrient branches. Those nutrient vessels formed longitudinal vessel chain of sural nerve shaft, vessel chain of vein side and vessel network of deep superficial fascia. The distally-based superficial sural artery island flap was used in 18 cases, all flaps survived. Conclusion Distally-based sural nerve, small saphenous vein, and nutrient vessels of fascia skin have the same origin. Rotation point of flap is 3.0 cm to the cusp of lateral malleolus, when the distally-based flap is pedicled with the terminal branch of peroneal artery.Rotation point of flap is close to the cusp of lateral malleolus, when the distally-based flap is pedicled with the heel lateral artery.
Objective To investigate the clinical results of allograft and sural neurovascular flap in repairing calcaneus and skin defects.Methods From February 1996 to December 2002, allograft and sural neurovascular flap were used to repair calcaneusand skin defects in 6 cases. The causes included road accident in 3 cases, strangulation in 2 cases and crashing object in 1 case. The defect locations were at theback of the calcaneus( 1/3, 1/2 and 2/3 of calcaneus in 3 cases, 2 cases and 1case respectively). The flap area ranged from 6 cm×7 cm to 12 cm×17 cm. Results The flaps survived completely in 4 cases; the distal flaps necrosed partly in 2 cases and the wound healed by dressing. The postoperative X-ray films showed that the repaired bone and joint had normal position and the arcus plantaris recovered. After a follow upof 6 months to 3 years all the patients were achieved bone union in allograft and had no complications of absorption, infection and repulsion. The weightbearing and walking functions were restored and the injured foot obtained a satisfactory contour. After 36 months of operation, the sensory recovery of foot occurred. Conclusion The used-allograft iseasy to be obtained and arcus plantaris is easy to recover. The reversesural neurovascular- flap in repairing calcaneus and skin defects has the following advantages: the maintenance of blood supply for injured foot, the less dangerous operation, the simple procedure, the recovery of walking function, and the good appearance and sensation.
Objective To explore the application of the improved operative technique and clinical results of sural nerve nutritional vessel axial flap repairing the soft tissue defects of the lower leg,the ankle and the foot. Methods From January 1999 to Novenber 2004,the modified flaps were applied in 22 cases of soft tissue defect on the basis of anatomy of the intermusclar septum perforating branches of peroneal artery and the sural nerve nutritional vessel.There were 14 males and 8 females. Their ages ranged from 5 to 54 years.According to the position and size of the soft tissue defects, the sural nerve nutritional vessel flap pedicled with the perforating branch of the peroneal artery in the lower leg were desingned and obtained to repair the soft tissue defects of the lower leg,the ankle and the foot.The flap size ranged from 13cm×12cm to 30cm×20cm. The vessel pedicle of perforating branches ranged from 1.7cm to 3cm.The distribution of the vessel pedicle of perforating branches ranged from4.5cm to 8cm on the lateral malleolus.The diameters of vessel ranged from 1mm to 1.2mm. Results The flap pedicle with the terminal branch of the peroneal artery was used in 13 cases, the other branches were used in 9 cases. Among of 22 cases,the sural nerve were anastomosed with the acceptor sensory nerve in 4 cases. The skin sense were satisfactory after 1 year of operationnd 2-point discrimination was 10-13mm. All flaps survived completely in 22 cases. The outline andfunction were satisfactory during 6-18 months follow-up. Conclusion The blood supply of this flap is reliable. Flap elevation is easy. The size of flap is large enough to repair skin defects of the lower leg, the ankle and the foot.
【Abstract】 Objective To investigate the operative techniques and cl inical results of repairing the soft tissue defectsof forearm and hand with free peroneal perforator-based sural neurofasciocutaneous flap. Methods From May 2006 toJanuary 2007, 6 patients including 5 males and 1 female were treated. Their ages ranged from 22 years to 51 years. They were injured by motor vehicle accidents (2 cases), or crushed by machines (4 cases), with skin defect of hand in 1 case, skin defect of hand associated with tendon injuries and metacarpal fractures in 2 cases, skin defect of forearm in 2 cases, and forearm skin defects with fractures of radius and ulna in 1 case. The areas of soft tissue defect ranged from 16 cm × 7 cm to 24 cm × 10 cm. The debridement and the primary treatment to tendons or bones were performed on emergency. And free flaps were transplanted when the wound areas were stable at 4 to 7 days after the emergent treatment. During the operation, the flaps were designed along the axis of the sural nerve nutrient vessels according to the shape and size of the soft tissue defects, with the peroneal perforator above the lateral malleolus as the pedicle and along with a part of the peroneal artery for vascula anastomosis. Then the flaps were harvested and transferred to the reci pient sites with the peroneal vartey anastomosed to the radial (or ulnar) artery and the peroneal veins to one of the radial (or ulnar) veins and the cephal ic vein, respectively. The flap size ranged from 18 cm × 8 cm to 25 cm × 12 cm. The donor areas were closed by skin grafts. Results The 5 flaps survived after the surgery. Partial inadequate venous return and distal superficial necrosis happened in only 1 case, which also got secondary heal ing by changing dressing and anti-infective therapy. The donor sites reached primary heal ing completely. The followed-up in all the patients for 6 to 13 months revealed that the appearance and function of the flaps were all satisfactory, and no influence on ambulation of donor site was found. Conclusion Peroneal perforator-based sural neurofasciocutaneous flap has the advantages of favourable appearance, constant vascular pedicle, rel iable blood supply, large size of elevation and minor influence on the donor site. And the free transfer of this flap is an ideal procedure to repair the large soft tissue defects of forearm and hand.