Age-related macular degeneration is one of the major causes of blindness in the elderly. As an important pathway of cell metabolism, autophagy maintains intracellular homeostasis through the degradation and recycle of damaged organelles and macromolecules. Understanding its mechanism may promote discoveries to delay aging process, reduce the incidence of age-related diseases. In mammals, silent information regulator protein 6 (SIRT6) plays its deacetylase and ribonucleotransferase activity in multiple signaling pathways, including inhibition of cellular senescence, tumorigenesis, metabolic diseases, regulating cellular lifespan. It has a significant impact on the structure and function of tissues and organs. SIRT6 regulates intracellular autophagy mainly through the insulin-like growth factor-protein kinase B-mammalian target of rapamycin, reducing the accumulation of toxic metabolites and cellular senescence. The function of SIRT6 in age-related macular degeneration need to be combined with the genetic background, pathogenesis, clinical manifestations and other aspects of the disease, and it is expected to be further studied in subsequent studies.
Diabetic retinopathy is a vascular complication of diabetes, and homocysteine is an intermediate product of methionine metabolism. Hyperhomocysteinemia can directly or indirectly damage vascular endothelial cells, causing vascular endothelial cells dysfunction and participating in the occurrence and development of diabetic retinopathy. Uric acid is the final product of purine metabolism. Hyperuricemia can cause vascular endothelial dysfunction, oxidative metabolism, platelet adhesion and aggregation dysfunction, thus participating in the occurrence and development of diabetic retinopathy. In recent years, there have been many studies on the correlation between diabetic retinopathy and levels of homocysteine and uric acid. This article reviews the relevant literature at home and abroad in order to provide new information for the prevention and treatment of diabetic retinopathy.
ObjectiveTo observe the longterm effect of suramin on the inhibition of proliferation of human retinal pigment epithelial (RPE) cells in vitro. MethodsRPE cells grown in 9 pieces of 96well plate (12 wells each plate) were divided into experimental and control group, with 6 wells in each group. The concentration of 0.1 ml RPE cells in each well is 5×104 cells/ml. After the change of the medium, RPE cells were treated with suramin (250 μg/ml) in experimental group while treated with nothing in the control group. The medium of the 2 groups were changed to the normal medium after 4 days. At the 1st, 2nd, and 4thday after the addition of suramin and at the 1st, 2nd, 3rd, 5th, 6th, 7th, 9th , 11th and 13th day after removing suramin, 1 plate was randomly selected to stop culturing, and the proliferation of RPE cells were detected by methyl thiazolyl tetrazolium (MTT) assay. ResultsUnder reversed microscope, RPE cells in control group were fused completely at the 7th day after inoculation. The extracellular space of RPE cells in experimental groups was larger than that in the control group, and remained unfused at the 13th day after inoculation. The inhibitory rate of proliferation of RPE cells at the first day after treated with suramin was 14.85% and increased to the highest 25.79% at the 4th day. The first day after the suramincontaining media was removed, the inhibitory rate decreased to 12.35%, and then raised gradually to over 20% at the 3rd to 5th day. Finally, the rate drop to 14.71%. ConclusionSuramin has the long-term effect on the inhibition of RPE cells induced by serum, especially the inhibitive effect after the remove of suramin, which indicates the specific double-peak inhibition during the whole process.(Chin J Ocul Fundus Dis, 2005,21:25-27)
The prevalence of diabetes mellitus in adults of China has reached 12.8%. Diabetic retinopathy (DR) accounts for approximately 1/4-1/3 of the diabetic population. Several millions of people are estimated suffering the advanced stage of DR, including severe non-proliferative DR (NPDR), proliferative DR (PDR) and diabetic macular edema (DME), which seriously threat to the patients’ vision. On the basis of systematic prevention and control of diabetes and its complications, prevention of the moderate and high-risk NPDR from progressing to the advanced stage is the final efforts to avoid diabetic blindness. The implementation of the DR severity scale is helpful to assess the severity, risk factors for its progression, treatment efficacy and prognosis. In the eyes with vision-threatening DR, early application of biotherapy of anti-vascular endothelial growth factor can improve DR with regression of retinal neovascularization, but whether it is possible to induce capillary re-canalization in the non-perfusion area needs more investigation. Laser photocoagulation remains the mainstay treatment for non-center-involved DME and PDR.
Objective Methods Ninety male Wister rats were randomly divided into normal control group, diabetic group and FTY720 group, thirty rats in each group. Diabetes was induced by giving a single intraperitoneal injection of streptozocin. FTY720 group was administered with FTY720 at a dose of 0.3 mg/kg by oral gavage daily for 3 months after establishment of diabetes. All rats were used for experiments following intervention for 3 months in FTY720 group. Immunohistochemical staining was used to observe the expression and distribution of intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1), and the positive cells were counted. Real-time reverse transcription PCR was used to measure mRNA expression of ICAM-1 and VCAM-1. Fluorescein isothiocyanate-Concanavalin A perfusion was used to detect retinal leukocytes adhesion. Evans blue (EB) perfusion was used to analyze retinal vascular permeability. Immunofluorescence staining was used to detect retinal inflammatory cells infiltration. Results In diabetic group, both ICAM-1(t=12.81) and VCAM-1 (t=11.75) positive cells as well as their mRNA expression (t=16.14, 9.59) were increased compared with normal control group, with statistical significance (P < 0.05). In FTY720 group, both ICAM-1(t=-9.93) and VCAM-1 (t=-6.61) positive cells as well as their mRNA expression (t=-15.28, -6.10) were decreased compared with diabetic group, with statistical significance (P < 0.05). Retinal leukocytes adhesion (t=16.32) and EB permeability (t=17.83) were increased in diabetic group compared with normal control group, while they were decreased in FTY720 group compared with diabetic group(t=-9.93, -11.82),with statistical significance (P < 0.05). There were many CD45 positive leukocytes infiltration in retina of diabetic group, including CD11b positive macrophage/activated microglia, while both of them were little in FTY720 group. Conclusions FTY720 can decrease retinal leukocytes adhesion, reduce retinal vascular permeability and inflammatory cells infiltration, which is associated with down-regulation of ICAM-1 and VCAM-1.
The pathogenesis of diabetic retinopathy (DR) is complex and there are many related risk factors. It is related to the course of diabetes, blood glucose, blood pressure, and blood lipids, among which the course of disease and hyperglycemia are recognized main risk factors. In addition, other factors which include heredity, gender, age, obesity, pregnancy, insulin use, can also affect the occurrence and development of DR, but there is no unified conclusion about its correlation. A comprehensive understanding of the risk factors that affect DR can provide new ideas for the prevention, diagnosis, treatment, and intervention of DR.
Objective To evaluate the effect of vascular endothelial cell growth factor (VEGF) antisense oligodeoxynucleotides (ASODNs) on the expression of VEGF in rats with oxygen-induced retinopathy. Methods Thirty newborn Sprague-Dawley (SD) rats were randomly divided into 3 groups:normal control group, disposal group and non-disposed group, The animal models with oxygen-induced proliferative retinopathy were established by raising the rats in hyperoxic environment. Retrobulbar injection was performed with VEGF ASODNs or normal saline on the rats in 3 groups respectively. The intraocular tissues (all the tissues except the cornea, sclera, and lens) and serum were collected, and the expressions of VEGF were determined by using competitive enzyme immunoassay.Results The expressions of VEGF in intraocular tissues of rats in disposal group were significantly lower than those in non-disposed group (P<0.05), and there was no statistical difference between the disposal and normal control group (P>0.05). There was no significant difference of the expressions of VEGF in serum of rats between the disposal and non-disposed group (P>0.05), which were both lower than those in the normal control group (P<0.05). Conclusion VEGF ASODNs could significantly inhibit the expression of VEGF in intraocular tissues. (Chin J Ocul Fundus Dis,2003,19:172-174)
Objective To observe the morphological changes of dendrite and soma in retinal ganglion cells (RGCs) which subsisted in early diabetic rats. Methods The RGCs of 3-months-course diabetic rats and coeval normal rats were marked by gene gun techniques. To collect RGCs photographs by Leica microscope with Z axis and CCD camera;to observe the changes of diameter, variance of structural features in dendritic field and somata after classification which according to the size and morphology. Thy-1 antibody marks on the retinal RGCs, taking a photograph under fluorescent microscope, counting the changes of retinal RGCs density in early diabetic rat. Results In three-month diabetic rats,the density of retinal RGCs was decreased obviously. Morphological changes of RGCs in the dendritic fields were observed with gene gun technique. There was no severe variation in all kinds of the bole of cell dendrite, in which some only showed crispation partially and sparseness also twisting in the dendritic ramus. The mean diameter of dendritic field and soma in class A of diabetic rats was (401plusmn;86) mu;m, the mean diameter of dendritic field in control group was (315plusmn;72) mu;m,compared with each other, there is statistically significant differences (t=21.249,Plt;0.001); the mean diameter of soma in class A of diabetic rats was (24plusmn;6) mu;m, the mean diameter of soma in control group was (22plusmn;5) mu;m, compared with each other, there is no statistically significant differences (t=0.927,Pgt;0.05); the mean diameter of dendritic field and soma in class B of diabetic rats were (170plusmn;36)、(14plusmn;2) mu;m respectively, in control group were (165plusmn;36)、(16plusmn;2) mu;m, the mean diameter of dendritic field and soma in class C of diabetic group were(265plusmn;78)、(17plusmn;5) mu;m respectively, in control group were (251plusmn;57)、(17plusmn;4) mu;m , compared with each other, there are on statistically significant differences(t=1.357,0.798,0.835,1.104,Pgt;0.05). Conclusions In short-term diabetes, the survived RGCs show good plasticity in adult diabetic rats, especially in class A. The changes of dendrites were more sensitive than the soma, which could be the leading index of the morphologic changes of RGCs in the early stage. The good plasticity showed by the RGCs and the time window from changing in dendrite to cell death provide us many evidences not only for the research but also for the nerve protection in clinic. (Chin J Ocul Fundus Dis,2008,24:249-254)
Microparticles are small vesicles that are released by budding of the plasma membrane during cellular activation and apoptotic cell breakdown. A spectrum of cell types can release microparticles including endothelial cells, platelets, macrophages, lymphocytes and tumor cells. Biological effects of microparticles mainly include procoagulant activity, inhibition of inflammation and cancer progression. The present study shows that vitreous microparticles isolated from proliferative diabetic retinopathy (PDR) stimulated endothelial cell proliferation and increased new vessel formation, promoting the pathological neovascularization in PDR patients. Oxidative stress induces the formation of retina pigment epithelium-derived microparticles carrying membrane complement regulatory proteins, which is associated with drusen formation and age related macular degeneration. Microparticles from lymphocyte (LMP) play an important role in anti-angiogenesis by altering the gene expression pattern of angiogenesis-related factors in macrophages. Besides, LMP are important proapoptotic regulators for retinoblastoma cells through reduction of spleen tyrosine kinase expression and upregulation of the p53-p21 pathway which ultimately activates caspase-3. However, how to apply the microparticles in the prevention and treatment of retinal diseases is a major challenge, because the study of the microparticles in the fundus diseases is still limited. Further studies conducted would certainly enhance the application of microparticles in the fundus diseases.