ObjectiveTo review the recent research progress of different types of stem cells in the treatment of ischemic stroke.MethodsBy searching the PubMed database, a systematic review had been carried out for the results of applying different types of stem cells in the treatment of ischemic stroke between 2000 and 2020.ResultsStem cells can be transplanted via intracranial, intravascular, cerebrospinal fluid, and intranasal route in the treatment of ischemic stroke. Paracrine and cell replacement are the two major mechanisms of the therapy. The researches have mainly focused on utilization of neural stem cells, embryonic stem cells, and mesenchymal stem cells. Each has its own advantages and disadvantages in terms of capability of migration, survival rate, and safety. Certain stem cell therapies have completed phase one clinical trial.ConclusionStem cells transplantation is feasible and has a great potential for the treatment of ischemic stroke, albeit that certain obstacles, including the selection of stem cells, transplantation strategy, migration ability, survival rate, still wait to be solved.
OBJECTIVE To prevent early closure of growth plate and developmental deformities of limbs by allografts of cultured cartilages into growth plate defects of rabbits. METHODS Chondrocytes isolated from articular cartilage of 1-month rabbits formed cartilage after cultivation in centrifuge tubes. The cartilages cultured for two weeks were implanted into growth plate defects of proximal tibiae of 6-weeks rabbits. At 4th and 16th weeks, X-ray, histologic and immunohistochemical examination were performed. RESULTS The tibiae had no marked deformities after 4 weeks of operation. Histologic examinations showed that the defects were filled with cartilage. Immunohistochemical results of type II collagen were positive. The tibiae with allografts of cultured cartilages had no evident deformities after 16 weeks of operation. Histologic examination showed nearly closure of growth plates. On the contrary, the tibiae on control side formed severe deformities and growth plate were closed. CONCLUSION Allograft of cultured cartilages into growth plate defects may replace lost growth plate tissues, maintain normal growth of limbs and prevent developmental deformity.
Objective To study the gene expressions of human osteoblasts during the construction of tissue engineered bone with the bioderived material. Methods The fetal osteoblasts were used to construct tissue engineered bone with the bio-derived material and then were cultured 2,4,6,8 and 10 days in vitro. Real-time PCR analysis indicated that Cbfa 1, Osterix, Collagen type Ⅰ,osteocalcin(OC) and Integrin α5 and β1 were present in osteoblasts with bio-derived materials.Results The change ofCbfa1 was consistent with the change of Osterix. On 2nd day and 8th day, the expression of Osterix in experimental group was higher than that in control group, P<0.05. Collagen type Ⅰ’s change was consistent with change of OC expression, and its expression was higher in experimental group than that in control group on 2nd, 4th, 6th and 8th day. The Integrinexpression was high all along. Conclusion The important genes can be expressed normally by integrating osteoblasts with bioderived scaffolds. As skeleton tissue engineering scaffold, the bio-derived bone is conducive to keepthe osteoblast’s phenotype and differentiation with osteoconductive ability. The osteoblast can enter proliferation stage favorably and the scaffold materials exert no effects on it. Bio-derived bone can also supply more space for cellsto proliferate. The bio-derived materials promote osteoblasts adhesion.
Objective To investigate the effects of NGF on the prol iferation, mitotic cycle, collagen synthesis and migration of human dermal fibroblasts (HDFs), and to explore the function of NGF on the wound heal ing. Methods The 3rd generation of HDFs were incubated with various concentrations of NGF (0, 25, 50, 100, 200 and 400 ng/mL), the cell prol iferation was measured with MTT assay. After treated with NGF at 0, 100 ng/mL, the cell cycle of HDFs was determined by flow cytometry (FCM). Hydroxyprol ine and real-time fluorescence quantitative PCR (FQ-PCR) were used to measure collagen synthesis at protein level and mRNA level respectively. The in vitro cell scratch wound model was set up to observe the effect of NGF (0, 50, 100 and 200 ng/mL) on the migration of HDFs after 24 hours of culture. Results Absorbance value of HDFs for different concentrations of NGF (0, 25, 50, 100, 200, and 400 ng/ mL) showed that NGF did not influence the prol iferation of HDFs (P gt; 0.05). When HDFs were treated with NGF at 0 and 100 ng/mL, the result of FCM analysis showed that percentage of HDFs in G0/G1, S, G2/M phases were not changed (P gt; 0.05). Compared with control group, the expression of Col I and Col III were not significantly different, measured by both hydroxyprol ine and FQ-PCR (P gt; 0.05). The rates of HDFs’ migration at various concentrations of NGF (0, 50, 100, 200 ng/ mL) were 52.12% ± 6.50%, 80.67% ± 8.51%, 66.33% ± 3.58%, and 61.19% ± 0.97%, respectively, indicating that NGF could significantly enhanced the migration of HDFs at 50 and 100 ng/mL (P lt; 0.05). Conclusion NGF does not influence prol iferation, mitotic cycle and collagen synthesis of HDFs, but significantly enhanced migration in an in vitro model of wounded fibroblasts.
ObjectiveTo prepare the small intestinal submucosa (SIS)-silk composite scaffold for anterior cruciate ligament (ACL) reconstruction, and to evaluate its properties of biomechanics, biocompatibility, and the influence on synovial fluid leaking into tibia tunnel so as to provide a better choice in the clinical application of ACL reconstruction. MethodsThe silk was used to remove sericin and then weaved as silk scaffold, which was surrounded cylindrically by SIS to prepare a composite scaffold. The property of biomechanics was evaluated by biomechanical testing system. The cell biocompatibility of scaffolds was evaluated by live/dead staining and the cell counting kit 8 (CCK- 8). Thirty 6-week-old Sprague Dawley rats were randomly assigned to 2 groups (n=15). The silk scaffold (S group) and composite scaffold (SS group) were subcutaneously implanted. At 2, 4, and 8 weeks after implanted, the specimen were harvested for HE staining to observe the biocompatibility. Another 20 28-week-old New Zealand white rabbits were randomly assigned to the S group and SS group (n=20), and the silk scaffold and composite scaffold were used for ACL reconstruction respectively in 2 groups. Furthermore, a bone window was made on the tibia tunnel. At last, the electric resistance of tendon graft in the bone window was measured and recorded at different time points after 5 mL of 10% NaCl or 5 mL of ink solution was irrigated into the joint cavity recspectively. ResultsThe gross observation showed that the composite scaffold consisted of the helical silk bundle inside which was surrounded by SIS. The maximal load of silk scaffold and composite scaffold was respectively (138.62±11.41) N and (137.05±16.95) N, showing no significant difference (P>0.05); the stiffness was respectively (24.65±2.62) N/mm and (24.21±2.39) N/mm, showing no significant difference (P>0.05). The live/dead staining showed that the cells had good activity on both scaffolds. However, the cells on the composite scaffold had better extensibility. In addition, the cell proliferation curve indicated that no significant difference in the absorbance (A) values was founded between groups at various time points (P>0.05). HE staining showed less inflammatory cells and much more angiogenesis in SS group than in S group at 2, 4, and 8 weeks after subcutaneously implanted (P<0.05), indicating good biocompatibility. Additionally, the starting time points of electric resistance decrease and the ink leakage were both significantly later in SS group than in S group (P<0.05). The duration of ink leakage was significantly longer in SS group than in S group (P<0.05). ConclusionThe SIS-silk composite scaffold has excellent biomechanical properties and biocompatibility and early vacularization after in vivo implantation. Moreover, it can reducing the leakage of synovial fluid into tibia tunnel at the early stage of ACL reconstruction. So it is promising to be an ideal ACL scaffold.
Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.
Objective To compare biological characteristics between articular chondrocyte and meniscal fibrochondrocyte cultured in vitro andto investigate the possibility of using cultured cartilage as a substitute for meniscus.Methods Chondrocytes isolated from articular cartilage and meniscus of rabbits aged 3 weeks were respectively passaged in monolayer and cultured in centrifuge tube. Cartilages cultured in centrifuge tube and meniscus of rabbit aged 6 weeks were detected by histological examination and transmission electron microscopy. Growth curves of articular chondrocytes and meniscalfibrochondrocytes were compared; meanwhile, cell cycles of articular chondrocytes and meniscal fibrochondrocytes in passage 2and 4 were separately measured by flow cytometry.Results Articular chondrocytes in passage 4 were dedifferentiated. Articular chondrocytes formed cartilage 2 weeks after cultivation in centrifuge tube, but meniscal fibrochondrocytes could not generate cartilage. The differences in ultrastructure and histology obviously existed between cultured cartilage and meniscus; moreover, apoptosis of chondrocytes appeared in cultured cartilage. Proportion of subdiploid cells in articular chondrocytes passage 2 and 4 was markedly higher than that in passage 2 and 4 fibrochondrocytes(Plt;0.05). Conclusion Meniscal fibrochondrocytes can not form cartilage after cultivationin centrifuge tube, while cartilage cultured in centrifuge tube from articular chondrocytes can not be used as graft material for meniscus. Articular cartilage ismarkedly different from meniscus.
OBJECTIVE To investigate possibility of cartilage cultured in centrifuge tube as graft materials. METHODS: Articular chondrocytes isolated from a 3-week-old rabbit formed cartilage after cultivation for 2 weeks. Articular cartilage of humeral head, growth plate of proximal tibia and meniscus were collected from a 6-week-old rabbit. The ultrastructure of chondrocytes and extracellular matrix in the three kinds of cartilages and cultured cartilage were observed by transmission electronic microscopy. RESULTS: Cartilage cultured in centrifuge tube possessed unique ultrastructure and was similar to articular cartilage and growth plate, but it was markedly different from meniscus. The four kinds of cartilages were characteristic of respectively different chondrocytes and extracellular matrix. Cultured cartilage showed typical apoptosis of chondrocytes and "dark chondrocytes" appeared in growth plate. Condrocyte apoptosis was not seen in articular cartilage and meniscus. CONCLUSION: Cartilage cultured in centrifuge tube has unique ultrastructure and may be used as graft materials for articular cartilage and growth plate.