Mitochondrial quality control includes mechanisms such as mitochondria-derived vesicles, fusion / fission and autophagy. These processes rely on the collaboration of a variety of key proteins in the inner and outer membranes of mitochondria to jointly regulate the morphological structure and functional integrity of mitochondria, repair mitochondrial damage, and maintain the homeostasis of their internal environment. The imbalance of mitochondrial quality control is associated with leukemia. Therefore, by exploring the mechanisms related to mitochondrial quality control of various leukemia cells and their interactions with immune cells and immune microenvironment, this article sought possible targets in the treatment of leukemia, providing new ideas for the immunotherapy of leukemia.
Objective To investigate the effect of the 8-bromum-cyclic adenosine monophosphate (8-Br-cAMP) on the telomerase activity and changes of cell cycle in retinoblastoma (RB) cells. Methods The cultured RB cells were divided into the experimental group (8-Br-cAMP) and control group. After cultured for 24, 48 and 72 hours in vitro, the telomerase activity of RB cells was detected by polymerase chain reaction enzyme-linked immunosorbent assay (PCR-ELISA) and the changes of cell cycle were detected by flow-cytometry. Results The difference of telomerase activity was significant between the experimental groups and control group (Plt;0.01). There was a negative correlation between the A value of absorbance and the time in the experimental groups (r=-0.778 9, F=33.936, Plt;0.01). The changes of the cell cycle were that the percentages increased in G1 phase and decreased in S phases. Conclusion 8-Br-cAMP may weaken telomerase activity, affect the cell cycle, and inhibit the proliferation of RB cells. (Chin J Ocul Fundus Dis,2004,20:358-360)
Objective To know the abnormal expression of the cell cycle-regulated proteins in pancreatic adenocarcinoma and their effect on tumor cell growth. Methods The expression of p16, p21, Rb and p53 protein in 47 cases were investigated by immunohistochemistry with wet autoclave pretreatment for antigen retriaval. Furthermore, tumor growth index were assessed by a novel anti-ki-67 antibody (ki-s5). Results All the expression of p53, p16, p21 and Rb protein were the nuclear stainning. The positive rates of p53, p16, p21 and Rb protein were 55%, 53%, 74% and 98% respectively. There was negative correlation between of p16, p21 or Rb protein expression and ki-67 growth index. No relation of p53 protein stainning and the expression of p21 protein was found. Conclusion In pancreatic adenocarcinoma, the negative expression of p16 protein and p21 protein may play an important role in tumor cell growth, but tumor proliferation caused by abnormality of Rb protein is rare. The expression of p21 protein was not associated with the expression of p53 protein.
ObjectiveTo investigate the expression of mitochondrial transcription factor A (TFAM) in colon cancer and the effect of its expression on proliferation of colon cancer cell. MethodsThirty cases of colon cancer in the First Affiliated Hospital of Sun Yat-sen University from March 2013 to April 2013 were studied. TFAM mRNA was detected both in colon cancer tissue and para-cancer tissue by real-time PCR. TFAM mRNA and protein were detected in normal colon cell strain and colon cancer strains SW480, HT-29, and HCT116 by real-time PCR and Western blot, respectively. The proliferation of SW480 cells was evaluated after up-regulating TFAM. ResultsThe expression of TFAM mRNA in the colon cancer tissue was significantly higher than that in the para-cancer tissue (P < 0.000 1). The expressions of TFAM mRNA were obviously increased in the SW480, HT-29, and HCT116 cells as compared with the normal colon cell strain (P value was 0.000 8, 0.002 3, and 0.000 6, respectively), among which the most notable increase was detected in the SW480 cells. The expressions of TFAM protein were obviously increased in the SW480, HT-29, and HCT116 cells as compared with the normal colon cell strain (P value was 0.000 2, 0.003 8, and 0.001 6, respectively), among which the most notable increase was detected in the SW480 cells. After up-regulating TFAM by plasmid transfection, the proliferation of the pcDNA3.1-TFAM-SW480 cell was increased significantly as compared with the pcDNA3.1-SW480 cell at 96 h and 120 h after transfection by the MTT test (P < 0.000 1). The proliferation of the pcDNA3.1-TFAM-SW480 cell was increased significantly as compared with the pcDNA3.1-SW480 cell at 48 h after transfection by the BrdU test (P < 0.001 0). ConclusionTFAM expression is high in colon cancer. Up-regulated TFAM could promote the proliferation of colon cancer cells.
Objective To investigate the expression of cell division regulators p16, Rb and cyclin D1 in human early gasric carcinoma tissues and their role in tumor transformation and the correlation among p16, Rb and cyclin D1. MethodsA comparative study was carried out by using immuno-histochemical techniques between the paracarcinomatous intestinal metaplasia of 39 cases of early gatric carcinoma and the non-carcinomatous gastric mucosal intestinal metaplasia tissues of 34 cases.ResultsOver expression of cyclin D1 was determined in 33/39 carcinomatous samples(84.6%) and also in para-carcinomatous intestinal metaplasia tissues. p16 was undetectable in 12 of 39 samples. Interestingly, 15 of 26 Rb positive cancers had no or low p16,while 9 Rb negative cancers showed high levels of p16.Conclusion The over expression of cyclin D1 may be a common molecular abnormality and an early molecular event in early gastric carcinoma. Cyclin D1 over expression and Rb inactivation can co-exist in early gastric carcinoma. However, there is a reciprocity between Rb inactivation and p16 expression in early gastric carcinoma. Thus, abnormality in the negative feedback regulatory pathway of cyclin D1,Rb and p16 may be related to the tumorigenesis in early gastric carcinoma.
Objective To review the literature reports on research progress of Heme oxygenase 1 (HO-1) modified mesenchymal stem cells (MSCs). Methods The significance, effects, and related mechanism of HO-1 modification of MSCs were summarized by consulting the related literatures and reports of HO-1 modification of MSCs. Results HO-1 modification of MSCs has important research value. It can effectively enhance the anti-oxidative stress and anti-apoptotic properties of MSCs in complex internal environment after transplantation into vivo. It can also effectively enhance the immune regulation function of MSCs. It can improve the anti-injury, repair, and immune regulation effect of MSCs in various disease models and research fields. Conclusion The basic research of HO-1 modified MSCs has made remarkable progress, which is expected to be applied in clinical trials and provide theoretical basis and reference value for stem cell therapy.
Objective To know the basic research and the clinical application of cartilage-derived retinoic acid-sensitive protein (CD-RAP) in orthopedic and in other clinical fields. Methods The literature related to CD-RAP in basic research and clinical application were extensively reviewed. Results CD-RAP, as a protein, which is cartilage-specific,could be a marker of the joint diseases. It also can be used to monitor metastsais of melanoma. Conclusion CD-RAP test provides a new way to study repair of cartilage and metastsais of melanoma.
Objective To investigate the polymorphism of the vitamin D receptor gene (VDR)TaqⅠin relation to diabetic retinopathy. Method Fragment length discrepant allele specific PCR(FLDAS-PCR) were used to determine VDR genetypes in 158 patients with diabetic retinopathy and in 198 normal subjects. Results The frequency distribution of VDR genotypes in diabetic retinopathy patients was 106 (67.1%) in TT, 33(20.9%) in Tt, 19(12.0%) in tt; and in normal persons was 165 (83.3%) in TT, 23(11.6%) in Tt, 10 (5.1%) in tt. There was a significant difference between diabetic retinopathy patients and normal persons in distribution of VDR gene TaqⅠgenotypes(Plt;0.05). Conclusions There is some distribution alterations of VDR gene polymorphism in diabetic retinopathy patients. (Chin J Ocul Fundus Dis, 2006, 22: 94-96)