In order to study the curative effect of vascularized bone graft in the treatment of avascular necrosis of talus, 24 patients were treated with vascularized bone grafts, in which 9 cases had received 1st cuneiform bone graft with a malleolaris anteriomedialis, 4 cases with the 1st cuneiform bone graft with the medial tarsal artery and 11 cases with vascularized cuboid bone graft with the lateral tarsal artery. All of the patients were followed up for 3-5.5 years. The clinical observation and X-ray examination showed that function of the ankle joint was completely or almost normal in 16 cases, and the bone repair was excellent. There was slight pain in the ankle joint in 4 cases. The efficiency rate of the treatment was 83.3%. It could be concluded that vascularized bone graft might be an effective method in the treatment of avascular necrosis of talus.
ObjectiveTo investigate the effectiveness of corrective osteotomy for shortened medial foot column after old talar neck fracture.MethodsThe clinical data of 10 patients with shortened medial foot column after old talar neck fracture between June 2012 and May 2017 was retrospectively analyzed. There were 7 males and 3 females with an average age of 45.8 years (mean, 21-67 years). The time from fracture to corrective osteotomy was 9-60 months (mean, 20.9 months). The preoperative visual analogue scale (VAS) score was 7.1±1.2, the American Orthopaedic Foot and Ankle Society (AOFAS) score was 48.5±12.3, and the short-form 36 health survey scale (SF-36) score was 46.7±10.5. All 10 cases received open wedge osteotomy of medial talus. Among them, 2 received subtalar fusion and Achilles tendon lengthening, 2 lateralizing calcaneal osteotomy, and 2 Achilles tendon lengthening.ResultsAll incisions healed by first intention. All patients were followed up 13-72 months (mean, 38.0 months). The X-ray film showed that the angle between longitudinal axis of 1st metatarsal bone and talus increased from (−9.6±4.5) ° before operation to (1.3±2.7) ° at last follow-up (t=16.717, P=0.000); the angle between longitudinal axis of calcaneus and tibia increased from (−12.0±7.4) ° before operation to (−1.5±4.8) ° at last follow-up (t=5.711, P=0.000). At last follow-up, the VAS score, AOFAS score, and SF-36 score were 1.6±1.0, 88.3±5.4, and 85.4±9.2, respectively, which increased significantly when compared with the preoperative scores (t=13.703, P=0.000; t=14.883, P=0.000; t=16.919, P=0.000). X-ray film and CT showed that the osteotomy and arthrodesis sites healed well at 2-4 months after operation.ConclusionIt’s a proper procedure of anatomic reduction and reconstruction for patients with shortened medial foot column and good articular cartilage morphology after old talar fracture. Opening wedge osteotomy of medial talus is recommended and can obtain satisfactory clinical and radiographic results.
Objective To evaluate the effect of weight-bearing time on micro-fracture therapy for small sized osteochondral lesion of the talus (OLT) by comparing early weight-bearing and postponed weight-bearing. Methods Between March 2010 and September 2011, 43 patients with small sized OLT (lt; 2 cm2) scheduled for arthroscopic micro-fracture therapy were randomly divided into early weight-bearing group (n=22) and postponed weight-bearing group (n=21). There was no significant difference in gender, age, body mass index, disease duration, disease cause, preoperative visual analogue scale (VAS) score, and preoperative American Orthopaedic Foot and Ankle Society (AOFAS) score between 2 groups (P gt; 0.05). All patients of 2 groups received micro-fracture treatment under arthroscopy. Full weight bearing began under the protection of “8” figure shaped splint at immediately after operation in early weight-bearing group, and weight bearing began at 6 weeks after operation in postponed weight-bearing group. Results The size of cartilage injury was (1.24 ± 0.35) cm2 in early weight-bearing group and was (1.25 ± 0.42) cm2 in postponed weight-bearing group by arthroscopy measurement, showing no significant difference between 2 groups (t=0.09, P=0.93); and there was no significant difference in cartilage injury grading between 2 groups (Z= — 1.45, P=0.15). The follow-up time was 12-18 months (mean, 14.5 months) in 2 groups. VAS and AOFAS scores of each group at each time point after operation were all significantly improved when compared with preoperative scores (P lt; 0.05), but no significant difference was found between 2 groups at 3, 6, and 12 months after operation (P gt; 0.05). The time of returning to work in early weight-bearing group [(6.35 ± 1.93) months] was significantly shorter than that in postponed weight-bearing group [(8.75 ± 1.48) months] (t= — 4.10, P=0.00). Conclusion For patients with small sized OLT, early weight-bearing and postponed weight-bearing after micro-fracture therapy under arthroscopy have similar short-term results. But patients undergoing early weight-bearing can earlier return to work than patients undergoing postponed weight-bearing.
Objective To explore the effectiveness and mechanism of pure platelet-rich plasma (P-PRP) on osteochondral injury of talus. Methods Thirty-six patients with osteochondral injury of talus selected between January 2014 and October 2017 according to criteria were randomly divided into control group (group A), leukocyte PRP (L-PRP) group (group B), and P-PRP group (group C), with 12 cases in each group. There was no significant difference in gender, age, disease duration, and Hepple classification among the three groups (P>0.05). Patients in the groups B and C were injected with 2.5 mL L-PRP or P-PRP at the bone graft site, respectively. Patients in the group A were not injected with any drugs. The American Orthopaedic Foot and Ankle Society (AOFAS) score and visual analogue scale (VAS) score were used to evaluate the effectiveness before operation and at 3, 6, and 12 months after operation. Study on the therapeutic mechanism of P-PRP: MC3T3-E1 cells were randomly divided into control group (group A), L-PRP group (group B), and P-PRP group (group C). Groups B and C were cultured with culture medium containing 5% L-PRP or P-PRP respectively. Group A was cultured with PBS of the same content. MTT assay was used to detect cell proliferation; ELISA was used to detect the content of matrix metalloprotein 9 (MMP-9) protein in supernatant; alkaline phosphatase (ALP) activity was measured; and real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the expression of osteopontin (OPN), collagen type Ⅰ, and MMP-9 in cells. Western blot was used to detect the expression of MMP-9 in supernatant and phosphoinositide 3-kinase (PI3K), phosphorylated protein kinase B (pAKT), and phosphorylated c-Jun (p-c-Jun) in cells. ResultsAll patients were followed up 13-25 months, with an average of 18 months. No complication such as wound infection and internal fixation failure occurred. MRI showed that the degree of injury was similar between the three groups before operation, and patients in the three groups all recovered at 6 months after operation. Moreover, group C was superior to groups A and B. Compared with preoperation, AOFAS scores and VAS scores in the three groups were all significantly improved at each time point after operation (P<0.05). AOFAS score of group C was significantly higher than that of groups A and B at 3, 6, and 12 months after operation (P<0.05); there was no significant difference in VAS score between the three groups (P>0.05). Study on the therapeutic mechanism of P-PRP: The absorbance (A) value, ALP activity, the relative mRNA expression of OPN and collagen type Ⅰ in group C were significantly higher than those in groups A and B (P<0.05), and those in group B were significantly higher than those in group A (P<0.05). The relative expression of MMP-9 protein and mRNA and the content of MMP-9 protein detected by ELISA in group B were significantly higher than those in groups A and C, while those in group C were significantly lower than those in group A (P<0.05). Western blot detection showed that the relative expression of PI3K, pAKT, and p-c-Jun protein in group B was significantly higher than those in groups A and C (P<0.05), but there was no significant difference between groups A and C (P>0.05). Conclusion P-PRP is superior to L-PRP for osteochondral injury of talus, which may be related to the inhibition of PI3K/AKT/AP-1 signaling pathway in the osteoblast, thereby reducing the secretion of MMP-9.
Objective To analyse and summarize the diagnosis, treatment, and cl inical effects of talus lateral process fracture. Methods Between February 2001 and March 2009, 21 male patients with an average age of 33.6 years (range, 18-46years) with talus lateral process fractures were treated. Fracture was caused by fall ing from height in 18 cases, by tumbl ing in 2 cases, and by sprain in 1 case. According to Hawkins classification, there were 4 cases of type I, 15 cases of type II, and 2 cases of type III, all being closed fractures. The disease course was from 2 hours to 26 days. In 17 patients whose fracture fragments were more than 1 cm × 1 cm × 1 cm or whose fracture fragments shifting was more than 1 mm, open reduction and internal fixation with AO hollow titanium nails were performed in 14 patients, open reduction and internal fixation with door-shape self-made nail in 1 patient, and open reduction and internal fixation with absorbable screws in 2 patients. In 4 patients whose fracture fragments were less than 0.6 cm × 0.5 cm × 0.5 cm or whose fracture fragments shifting was less than 1 mm, fragments removel was performed in 2 patients, Kirschner pins in 1 patient, and plaster conservative therapy in 1 patient. In patients with l igaments injury, the l igaments was reconstructed during the operation. Results All the incisions achieved primary heal ing. Twenty-one patients were followed up 9.5 months to 8 years. No ankle pain occurred and the range of joint motion was normal after operation. The X-ray films showed that all cases achieved fracture union. And the healing time was from 8 weeks to 14 weeks (10 weeks on average). According toAmerican Orthopeadic Foot amp; Ankle Society (AOFAS) for foot, the results were excellent in 17 cases, good in 3 cases, and moderate in 1 case; the excellent and good rate was 95.24%. Conclusion The size and displacement of fracture fragment should be considered first in the treatment of lateral process fracture of talus; in patients who are compl icated by lateral malleolus l igament injury, the l igament should be reconstructed to avoid the chronic non-stabil ity of lateral ankle.
Objective To explore the clinical efficacy of external fixation combined with autogenous periosteal iliac bone for repairing cartilage injury of the talus. Methods The data of 18 patients with talus cartilage injury treated in Mianyang Central Hospital between January 2018 and January 2022 were retrospectively analyzed. All patients received autogenous periosteal iliac bone transplantation and external fixation brackets. The Visual Analogue Scale (VAS), joint range of motion, and the American Orthopedic Foot and Ankle Society (AOFAS) ankle posterior foot score were assessed before surgery and 6 months after surgery. The changes of cartilage damage of the talus on MRI before and after surgery were compared. The complications related to the operation were recorded. Results The patients included 5 males and 13 females, with an average age of (50.7±5.4) years. There were 6 cases injured on the left side and 12 cases injured on the right side. The Hepple’s classification was type Ⅲ in 8 cases and type Ⅳ in 10 cases. The average follow-up time was (17.6±8.2) months. The preoperative VAS score, ankle range of motion, and AOFAS score were 5.5±1.5, (48.0±10.5)°, and 54.9±11.1, respectively. Six months after surgery, the VAS score, ankle range of motion, and AOFAS score were 2.1±0.9, (64.8±7.8)°, and 82.6±8.7, respectively, and the differences from preoperative scores were all statistically significant (P<0.05). The preoperative MRI showed that the area of talus cartilage injury was (2.6±0.6) cm2, and the depth was (10.0±0.4) mm; the 1-year follow-up MRI showed that the area of talus cartilage injury was (0.6±0.2) cm2, and the depth was (5.5±0.3) mm, which statistically differed from those before surgery (P<0.05). By the last follow-up, no postoperative complications such as incision infection, bone graft fracture, and nonunion of the inner ankle were found. Conclusions Autogenous periosteal iliac bone graft can repair cartilage injury of the talus. External fixation stent provides early joint stability, avoiding uneven joint compression or joint impact.