west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "软骨细胞" 83 results
  • APOPTOSIS OF FETUS CHONDROCYTES CULTURED IN VITRO AND EXPRESSION OF CASPASE-3

    OBJECTIVE: To investigate apoptosis of chondrocytes cultured in vitro and related expression of caspase-3. METHODS: Apoptosis of chondrocytes were detected by flow cytometry analysis and TUNEL staining. The expression of caspase-3 was determined by RT-PCR and Western blot, and caspase-3 protein activity was determined by ELISA. RESULTS: Apoptosis was observed in chondrocytes cultured in vitro from passage 1 to passage 4 at various degrees. The percentage of apoptosis of chondrocytes on day 7 was much higher than that on day 3 (15.7% +/- 0.3% vs 8.9% +/- 0.6%, P lt; 0.01). caspase-3 mRNA and protein expressed in chondrocytes during whole culture process. Along with the culture time extension in vitro, caspase-3 expression and protein activity up-regulated, coincident with apoptosis of chondrocyte. caspase-3 was activated and a fragment of 20 kDa was detected after 7 days of culture. CONCLUSION: caspase-3 is involved in apoptosis of chondrocytes cultured in vitro.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • COMPARATIVE STUDY ON THE MAIN BIOLOGICAL CHARACTERISTICS OF MARROW-DERIVED STROMAL CELLS AND CHONDROCYTES IN VITRO CULTURE IN RABBITS

    Objective To observe the main biological characteristics and chondrogenesis potency of bone marrow -derived stromal cells(MSCs) after cytokinesinduction or gene modification in vitro. Methods MSCs from an adult New Zealand white rabbit were isolated and cultivated, and then MSCs were divided into the common medium group(Group A, 15%FBS in DMEM), the induced group by cytokines (Group B), the transfected group(Group C)with adenovirus-hepatocyte growth factor transgene (adHGF). The medium of group B consisted of transforming growth factor-β1(TGF-β1,10 ng/ml), basic fibroblast growth factor(bFGF,25 ng/ml) addexamethasone (DEX,10-7mol/L) with 15%FBS in DMEM. Cartilage slices wereobtained from femoral condyles and patellar grove in the same rabbit. The minced cartilage was digested in Ⅱ collagenase (3 mg/ml) to obtain chondrocytes(Group D). The change of cell appearance, proliferation capacity, glycosaminoglycans(GAG), immunohistochemical staining for type Ⅰ, Ⅱ collagen were observed during the 5th passage MSCs and MSCs after induction or gene modification. Expression of mRNA for type Ⅰ and Ⅱ collagen was detected by RT-PCR. Results Primary MSCs proliferated as shortspindle shape, while the 5th MSCs showed longspindle shape. Positive stain of type Ⅰ collagen could be found in groups A, B and C, while positivestain of type Ⅱ collagen was shown in groups B and D. The content of GAG in group B was higher than that in group A, but there was no significant difference between them(Pgt;0.05), and there was significant difference between groups A and D(Plt;0.05). No significant difference was noted in groups A,B and C on proliferation by MTT(Pgt;0.05),except that of at the fourth day after transfection between groups A and C(Plt;0.05). RT-PCR demonstrated that MSCs always had higher levelsof mRNA type Ⅰ collagen in groups A, B and C. The expression of mRNA type Ⅱ collagen was identified in groups B and D, and only low levels of mRNA type Ⅱ collagen in group C. Conclusion The above results indicate MSCs have a natural tendency of osteogenic differentiation in vitro culture, and also demonstrate the chondrogenic potency with the technique of cytokines induction or gene modification after passage. MSCs can be transfected efficiently being seed cells in tissue engineered bone or cartilage to accept target genes such as adHGF, and have a higher levels of expression in vitro, which lasted 4 weeks at least.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON REPAIR OF ARTICULAR CARTILAGE DEFECT IN LARGE AREA WITH CHONDROCYTES CULTURED ON FASCIA

    Objective To study the biological characteristic and potential of chondrocytes grafting cultured on fascia in repairing large defect of articular cartilage in rabbits. Methods Chondrocytes of young rabbits were isolated and subcultured on fascia. The large defect of articular cartilage was repaired by grafts of freeze-preserved and fresh chondrocytes cultured on fascia, and free chondrocytes respectively; the biological characteristic and metabolism were evaluated bymacroscopic, histological and immunohistochemical observations, autoradiography method and the measurement of nitric oxide content 6, 12, 24 weeks after grafting. Results The chondrocytes cultured on fascia maintained normal growth feature and metabolism, and there was no damage to chondrocytes after cryopreservation; the repaired cartilage was similar to the normal cartilage in cellular morphology and biological characteristics. Conclusion Chondrocytes could be cultured normally on fascia, which could be used as an ideal carrier of chondrocytes.

    Release date: Export PDF Favorites Scan
  • A MORPHOLOGICAL STUDY OF CHONDROGENESIS BY ADIPOSE-DERIVED ADULT STEM CELLS INDUCED BY RECOMBINANT HUMAN BONE MORPHOGENETICPROTEIN 2

    Objective To investigate the possibility of differentiation of theisolated and cultured adipose-derived adult stem cells into chondrocytes, which is induced by the recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods The rabbit adipose tissue was minced and digested by collagenase Type Ⅰ. The adposederived adult stem cells were obtained and then they were cultured inthe micropellet condition respectively in the rhBMP-2 group, the rhTGF-β1 group, the combination group, and the control group for 14 days. The differentiation of the adiposederived stem cells into chondrocytes was identifiedby the histological methods including HE, Alcian blue, Von kossa, and immunohistochemical stainings. Results After the continuous induction by rhBMP-2 and continuous culture for 14 days, the HE staining revealed a formation of the cartilage lacuna; Alcian blue indicated that proteoglycan existed in the extracellular matrix; the immunohistochemical staining indicated that collagen Ⅱ was in the cellular matrix; and Von kossa indicated that the adipose-derived stem cells couldnot differentiate into the osteoblasts by an induction of rhBMP-2. Conclusion In the micropellet condition, the adipose-derived adult stemcells can differentiate into the chondrocytes, which is initially induced by rhBMP-2. This differentiation can provide a foundation for the repair of the cartilage injury.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF NUCLEUS PULPOSUS CELLS PHENOTYPIC MARKERS

    Objective Toreview theresearch progress of nucleus pulposus cells phenot ypic markers. Methods The domestic and international l iterature about nucleus pulposus cells phenotypic markers was reviewed extensively and summarized. Results Due to different biomechanical properties,nucleus pulposus cells and articular chondrocytes have differences in morphology and extracellular components such as the ratio of aggrecan to collagen type II α1. Nucleus pulposus cells can be identified by surface marker (CD24), gene markers (hypoxia inducible factor 1α, glucosetransporter protein 1, matrix metalloproteinase 2, vascular endothel ial growth factor A, etc), and various markers (keratin 19 and glypican 3,paired box 1, forkhead box F1 and integrin-binding sialoprotein, etc). Conclusion Nucleus pulposus cells and articular chondrocytes have different phenotypic markers, but nucleus pulposus cells are still lack of specific markers.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
  • NEOCARTILAGE OF PREDETERMINED SHAPES

    OBJECTIVE: To study chondrogenesis of calcium alginate-chondrocytes predetermined shapes. METHODS: Chondrocytes isolated from ears of rabbit by type II collagenase digestion, and then were mixed with 1.5% solidium alginate solution. The suspension was gelled to create three spatial shapes as triangle, circle and quadrilateral by immersed into 2.5% CaCl2 for 90 minutes, and then was implanted into the subcutaneous pocket on the dorsum of the rabbit. Samples were harvested at 6 and 12 weeks after implantation. RESULTS: Gross examination of excised specimens at 6 and 12 weeks after implantation revealed the presence of new cartilage of approximately the same dimensions as the original construct. Histologic evaluation using hematoxylin and eosin stains confirmed the presence of cartilage nodules at 6 weeks after implantation. After 12 weeks, mature cartilage was observed and histologic analysis confirmed the presence of well formed cartilaginous matrix. CONCLUSION: Predetermined shapes neocartilage can be regenerated using calcium alginate as a carrier of chondrocytes in the bodies of immune animals.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • THE EXPERIMENTAL STUDY ON OPTIMAL CELL DENSITY AND FORMATION TIME OF TISSUE ENGINEERED AUTOLOGOUS CARTILAGE

    OBJECTIVE This paper aims to investigate the suitable cell density and the best formation time of tissue engineered autologous cartilage and to provide theoretical basis and parameters for clinical application. METHODS The chondrocytes isolated from mini swines’ ears were mixed with injectable biocompatible matrix (Pluronic), and the density of cell suspensions were 10, 20, 30, 40, 50, 60, 70 x 10(4)/ml. The chondrocyte-polymer constructs were subcutaneously injected into the abdomen of autologous swine. The specimens were observed grossly and histologically after 6 weeks, and investigated the suitable cell density. Then the chondrocyte-polymer constructs with suitable cell density were transplanted into the abdomen of autologous swine and evaluated grossly and histologically in 1, 3, 6, 9, 15 weeks after transplantation to investigate the best formation time of tissue engineered cartilage. RESULTS The experiments demonstrated that the tissue engineered autologous cartilage was similar to the natural cartilage on animals with normal immune system in histological characteristics. The optimal chondrocyte density is 50 x 10(6)/ml, and the proper harvest time is the sixth week. CONCLUSION With tissue engineering skills, we have identified the optimal chondrocyte density and the proper harvest time.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • PRELIMINARY STUDY OF BMSCs SEEDED INTO COLLAGEN Ⅰ -GLYCOSAMINOGLYCAN MATRICES INDUCEDTOWARD CARTILAGE

    【Abstract】 Objective To investigate the possibil ity of BMSCs seeded into collagen Ⅰ -glycosaminoglycan (CG)matrices to form the tissue engineered cartilage through chondrocyte inducing culture. Methods Bone marrow aspirate of dogs was cultured and expanded to the 3rd passage. BMSCs were harvested and seeded into the dehydrothemal treatment (DHT)cross-l inked CG matrices at 1×106 cells per 9 mm diameter sample. The samples were divided into experimental group and control group. In the experimental group, chondrogenic differentiation was achieved by the induction media for 2 weeks. Medium was changed every other day in both experimental group and control group. The formation of cartilage was assessed by HE staining and collagen Ⅱ immunohistochemical staining. Results The examinations under the inverted phase contrast microscopeindicated the 2nd and 3nd passage BMSCs had the similar morphology. HE staining showed the BMSCs in the experimental group appeared polygon or irregular morphology in the CG matrices, while BMSCs in the control group appeared fibroblast-l ike spindle or round morphology in the CG matrices. Extracellular matrix could be found around cells in the experimental group. Two weeks after seeded, the cells grew in the CG matrices, and positive collagen Ⅱ staining appeared around the cells in the experimentalgroup. There was no positive collagen Ⅱ staining appeared in the control group. Conclusion It is demonstrated that BMSCs seeded CG matrices can be induced toward cartilage by induction media.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
  • Expression and significance of hypoxia-inducible factor 1α in endplate chondrocytes of rats

    Objective To explore the expression and significance of hypoxia-inducible factor 1α (HIF-1α) in endplate chondrocytes, and to study the relations between HIF-1α expression and endplate chondrocytes apoptosis. Methods Eight Sprague Dawley rats were selected to obtain the L1-5 intervertebral disc endplate; the endplate chondrocytes were isolated by enzyme digestion method, and the endplate chondrocytes at passage 3 were cultured under 20% O2 condition (group A), and under 0.5% O2 condition (group B). Cell morphology was observed by inverted phase contrast microscope and cell apoptosis was detected using flow cytometry after cultured for 24 hours; the mRNA expression of HIF-1α was detected by real-time fluorescent quantitative PCR, the protein expressions of HIF-1α, Bax, and Bcl-2 by Western blot. Gene clone technology to design and synthesize two siRNAs based on the sequence of HIF-1α mRNA. HIF-1α specific RNAi sequence compound was constructed and transfected into cells. The transfected endplate chondrocytes at passage 3 were cultured under 0.5% O2 condition in group C and group D (HIF-1α gene was silenced). After cultured for 24 hours, cells were observed via immunofluorescence staining of HIF-1α, and cell apoptosis was detected using flow cytometry. Meanwhile, the mRNA expressions of HIF-1α, collagen type II (COL II), Aggrecan, and SOX9 were detected by real-time fluorescent quantitative PCR, and the protein expressions of HIF-1α, Bax, and Bcl-2 by Western blot. Results At 24 hours after culture, small amount of vacuoles necrotic cells could be observed in group A and group B; there was no significant difference in apoptosis rate between groups A and B (t=1.026,P=0.471), and HIF-1α mRNA and protein expressions in group B were significantly higher than those in group A (t=22.672,P=0.015;t=18.396,P=0.013), but, there was no significant difference in protein expressions of Bax and Bcl-2 between groups A and B (t=0.594,P=0.781;t=1.251,P=0.342). The number of vacuolar necrosis cells in group D was significantly higher than that in group C, and HIF-1α positive cells were observed in group D. The apoptosis rate of group D was significantly higher than that of group C (t=27.143,P=0.002). The mRNA expressions of HIF-1α, COL II, Aggrecan, and SOX9 in group D were significantly lower than those in group C (t=21.097,P=0.015;t=34.829,P=0.002;t=18.673,P=0.022;t=31.949,P=0.007). The protein expressions of HIF-1α and Bcl-2 in group D were significantly lower than those in group C (t=37.648,P=0.006;t=16.729,P=0.036), but the protein expression of Bax in group D was significantly higher than that in group C (t=25.583,P=0.011). Conclusion HIF-1α mRNA expression is up-regulated under hypoxia condition, which will increase the hypoxia tolerance of endplate chondrocytes. Cell apoptosis is suppressed by the activation of HIF-1α in endplate chondrocytes under hypoxia condition.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Research progress of different cell seeding densities and cell ratios in cartilage tissue engineering

    ObjectiveTo review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. MethodsThe literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. ResultsArticular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. ConclusionDue to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.

    Release date:2022-05-07 02:02 Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content