Objective To explore the methods of repairing cartilagedefects and to introduce the clinical experience with the autologous osteochondral transplantation. Methods Twenty-five patients with chondral and osteochondral defects of the weight-bearing surfaces were treated by the autologous osteochondral transplantation for the repair of the chondral and osteochondral defects of the unweightbearing surfaces under arthroscope. According to the shape of the defects, the different dimensions of the osteochondral autograft were selected. All the patients began the training of the continuous passive motion after operation. Six weeks after operation, the patients began to walk in the weightbearing habitus. However, in the control group, another 25 patients were retrospectively analyzed, who had chondral and osteochondral defects of the weight-bearing surfaces but were treated only by the cleaning and drilling procedures. The scores evaluated bythe Brittberg-Peterson scoring scale of the 2 group were 98.65±9.87 and 96.98±8.94 respectively. Results The follow-upfor 3-24 months after operation revealed that the treated knee joint had a goodmotion extent. The pain was obviously alleviated. Based on the longitudinal study with the three-dimensional spoiled magnetic resonance imaging (MRI), the signal intensity of the repaired tissues approached to the normal condition. The scores evaluated by the Brittberg-Peterson scoring scale were almost zero 3 monthsafter operation in the experimental group, and the scores were 58.48±6.98 inthe control group. There were significant differences between the experimental group and the control group(P<0.01). Conclusion Autologous osteochondral transplanation under arthroscope is a good curative method for the cartilage defects, with advantages of minimal invasiveness and avoidanceofrejections resulting from allografts. However, its long-term effect needs to befurther studied. The conventional therapies including cleaning and drilling are useful in alleviating the symptoms.
Objective To investigate the performance of loading naringin composite scaffolds and its effects on repair of osteochondral defects. Methods The loading naringin and unloading naringin sustained release microspheres were prepared by W/O/W method; with the materials of the attpulgite and the collagen type I, the loading naringin, unloading naringin, and loading transforming growth factor β1 (TGF-β1) osteochondral composite scaffolds were constructed respectively by " 3 layers sandwich method”. The effect of sustained-release of loading naringin microspheres, the morphology of the composite scaffolds, and the biocompatibility were evaluated respectively by releasingin vitro, scanning electron microscope, and cell counting kit 8. Forty Japanese white rabbits were randomly divided into groups A, B, C, and D, 10 rabbits each group. After a osteochondral defect of 4.5 mm in diameter and 4 mm in depth was made in the intercondylar fossa of two femurs. Defect was not repaired in group A (blank control), and defect was repaired with unloading naringin composite scaffolds (negative control group), loading naringin composite scaffolds (experimental group), and loading TGF-β1 composite scaffolds (positive control group) in groups B, C, and D respectively. At 3 and 6 months after repair, the intercondylar fossa was harvested for the general, HE staining, and toluidine blue staining to observe the repair effect. Western blot was used to detect the expression of collagen type II in the new cartilage. Results Loading naringin microspheres had good effect of sustained-release; the osteochondral composite scaffolds had good porosity; the cell proliferation rate on loading naringin composite scaffold was increased significantly when compared with unloading naringin scaffold (P<0.05). General observation revealed that defect range of groups C and D was reduced significantly when compared with groups A and B at 3 months after repair; at 6 months after repair, defects of group C were covered by new cartilage, and new cartilage well integrated with the adjacent cartilage in group D. The results of histological staining revealed that defects were filled with a small amount of fibrous tissue in groups A and B, and a small amount of new cartilage in groups C and D at 3 months after repair; new cartilage of groups C and D was similar to normal cartilage, but defects were filled with a large amount of fibrous tissue in groups A and B at 6 months after repair. The expression of collagen type II in groups C and D was significantly higher than that in groups A and B (P<0.05), but no significant difference was found between groups C and D (P>0.05). Conclusion Loading naringin composite scaffolds have good biocompatibility and effect in repair of rabbit articular osteochondral defects.
Objective To construct a new type of self-assembling peptide nanofiber scaffolds—RGDmx, and to study the cell compatibility of the new scaffolds and the proliferation and chondrogenic differentiation of precartilaginous stem cells(PSCs) in scaffolds. Methods PSCs were separated and purified from newborn Sprague Dawley rats by magnetic activated cell sorting and indentified by immunohistochemistry and immunofluorescent staining. The RGDmx were constructed by mixing KLD-12 and KLD-12-PRG at volume ratio of 1 ∶ 1. PSCs at passage 3 were seeded into the KLD-12 scaffold (control group) and RGDmx scaffold (experimental group). The proliferation of PSCs in 2 groups were observed with the method of cell counting kit (CCK) -8 after 1, 3, 7, and 14 days after culture. The RGDmx were constructed by mixing KLD-12-PRG and KLD-12 at different volume ratios of 0, 20%, 40%, 60%, 80%, and 100% and the prol iferation of PSCs was also observed. The complete chondrogenic medium (CCM) was used to induce chondrogenic differentiation of PSCs in different scaffolds. The differentiation of PSCs was observed by toluidine blue staining and RT-PCR assay. Results PSCs were separated and purified successfully, which were identified by immunohistochemistry and immunofluorescent staining methods. The results of CCK-8 showed that the absorbance (A) value in the experimental group increased gradually and reached the highest at 7 days; the A value in the experimental group was significantly higher than that in the control group at 7 days and 14 days (P lt; 0.05). Meanwhile, the A value in the RGDmx scaffold with a volume ratio of 40% was significantly higher than those in others (P lt; 0.05). After 14 days of induction culture with CCM, the toluidine blue staining results were positive in 2 groups; the results of RT-PCR showedthat the expression levels of collagen type II and the aggrecan in the experimental group were significantly higher than those in the control group (P lt; 0.05). Conclusion The self-assembling peptide nanofiber scaffold—RGDmx is an ideal scaffold for tissue engineer because it has good cell compatibility and more effective properties of promoting the differentiation of PSCs to chondrocytes.
Objective To study the biological characteristic and potential of chondrocytes grafting cultured on fascia in repairing large defect of articular cartilage in rabbits. Methods Chondrocytes of young rabbits were isolated and subcultured on fascia. The large defect of articular cartilage was repaired by grafts of freeze-preserved and fresh chondrocytes cultured on fascia, and free chondrocytes respectively; the biological characteristic and metabolism were evaluated bymacroscopic, histological and immunohistochemical observations, autoradiography method and the measurement of nitric oxide content 6, 12, 24 weeks after grafting. Results The chondrocytes cultured on fascia maintained normal growth feature and metabolism, and there was no damage to chondrocytes after cryopreservation; the repaired cartilage was similar to the normal cartilage in cellular morphology and biological characteristics. Conclusion Chondrocytes could be cultured normally on fascia, which could be used as an ideal carrier of chondrocytes.
Objective To investigate the clinical application of periosteal autograft in repair of cartilage defect caused by osteoarthritis of knee. Methods From 1996 to 1999, 36 knees of cartilage defect of knee joint in 28 cases were treated. In the operation, the cracked degenerative cartilage was removed before free periosteum from tibia was transplanted to repair the defect, and the meniscuses in 8 knees of the 36 knees were reconstructed. After operation, early continuous passive movement was adopted for 4 weeks, and 8 knees with reconstruction ofthe meniscus were immobilized by plaster splint for 7 days after operation and before passive movement. All of the cases were followed up for 1 to 4 years before clinical evaluation in symptoms, signs and radiological findings. Results The general satisfactory rate was 86.1%, in which the function was excellent in 22 knees and good in 9 knees. Conclusion The periosteal autograft is a good choice for repairing cartilage defect due to osteoarthritis, with a satisfactory outcomein the short term.
It is very difficult to repair large articular cartilage defect of the hip. From May 1990 to April 1994, 47 hips in 42 patients of large articuler cartilage defects were repaired by allograft of skull periosteum. Among them, 14 cases, whose femoral heads were grade. IV necrosis, were given deep iliac circumflex artery pedicled iliac bone graft simultaneously. The skull periosteum had been treated by low tempreturel (-40 degrees C) before and kept in Nitrogen (-196 degrees C) till use. During the operation, the skull periosteum was sutured tightly to the femoral head and sticked to the accetabulum by medical ZT glue. Thirty eight hips in 34 patients were followed up for 2-6 years with an average of 3.4 years. According to the hip postoperative criteria of Wu Zhi-kang, 25 cases were excellent, 5 cases very good, 3 cases good and 1 case fair. The mean score increased from 6.4 before operation to 15.8 after operation. The results showed, in compare with autograft of periosteum for biological resurface of large articular defect, this method is free of donor-site morbidity. Skull periosteum allograft was effective for the treatment of large articular cartilage defects in hip.
Objective To study the effect of adenovirus bone morphogenetic protein 2 gene(Ad-BMP-2) transfer inducing mesenchymal stem cells (MSCs) compounded with fibrin gel on repair of rabbit cartilage defect. Methods ①BMP-2 and collagen type Ⅱ in MSCs transferred by Ad-BMP-2 were examined by RT-PCR, aniline dyeing and immunohistochemical analysis in vitro. ②MSCs were cultured in fibrin gel for 9 days, and were examined with electron microscope. ③Fortytwo rabbits suffering from cartilage defect were divided into 3 groups:the defects were treated with Ad-BMP-2 transfer inducing MSCs compounded with fibrin in group A, with MSCs compounded with fibringel in group B and with no implants in group C as control. HE and aniline dyeing, immunohistochemical analysis and biomechanics study were carried out in the 4th, 8thand 12th weeks. Results ①The positive results were observed for BMP-2 and collagen type Ⅱ with RT-PCR on the 3rd day and 5th day respectively, being statisticallysignificant difference when compared with control group(P<0.05). ②Ad-BMP-2 transfer inducing MSCs cultured in fibrin gel were positively stained by aniline dyeing and immunohistochemstry. ③The therapy effect of group A was better than that of the other two groups in histology, biochemistry and biomechanics, and the biomechanic and histological features of repaired cartilage were similar to those of the natural cartilage. Conclusion Ad-BMP-2 can induce the expressionof collagen type Ⅱ and mucopolysaccharide in MSCs by secreting BMP-2, and can reconstruct articular cartilage defects better when compounded with fibrin gel.
Objective To establ ish a porcine model of articular full-thickness cartilage defect characterized byremaining cartilage calcified zone on femoral trochlea, so as to provide a considerable and comparative control group forinvestigating repair effects of tissue engineered scaffolds in articular cartilage defects with cartilage calcified zone remaining.Methods The full-thickness cartilage column defects (6 mm in diameter, 0.2-0.5 mm in depth) without damage on calcifiedcartilage zone were made on the femoral trochlea in 9 clean-grade 6-month-old Guizhou mini pigs by standard cartilage-defectmakingsuites. Microscopical observation was performed after modeling. Scanning were made by 3.0T MRI at 4 weeks. Thengeneral observation, stereomicroscope, and histological staining were used to observe cartilage repair. Results All animals wereal ive. No infection of incisions or patellar dislocations occurred; they were able to walk with partial weight-bearing immediatelyafter surgery and could move freely without limp at 1 week. Obvious signal discontinuity in trochlea and subchondral bone couldbe observed in MRI, without deep signal change in defects surrounding. Microscopical observation showed a few repair tissueand petechia at base of the defect with clear boundary. Nearly intact calcified zone of cartilage and zonal collapse of subchondralbone in defects could be observed with stereomicroscope. Under common microscope, no chondrocytes was found in defects,as well as negative staining of fast green-safranin O and alcian blue. Under polarized microscope, the bottom of defects werefilled with a l ittle of fibrous tissue presenting continuous and b l ight-refraction by sirius red staining. Conclusion Theanimal model of articular full-thickness cartilage defect on femoral trochlea by standard cartilage-defect-making suites can beapplied for the research of cartilage disease in early human osteoarthritis and function of calcified cartilage zone in pig.
ObjectiveTo investigate the effects of micro-fracture and insul in-l ike growth factor 1 (IGF-1) in treatment of articular cartilage defect in rabbits. MethodsTwenty-four New Zealand white rabbits (aged, 4-6 months; weighing, 2.5-3.5 kg) were randomly divided into 4 groups (n=6):micro-fractures and recombinant human IGF-1 (rhIGF-1) treatment group (group A), micro-fracture control group (group B), rhIGF-1 treatment control group (group C), and blank control group (group D). Full thickness articular cartilage defects of 8 mm×6 mm in size were created in the bilateral femoral condyles of all rabbits. The micro-fracture surgery was performed in groups A and B. The 0.1 mL rhIGF-1 (0.01 μg/μL) was injected into the knee cavity in groups A and C at 3 times a week for 4 weeks after operation, while 0.1 mL sal ine was injected in groups B and D at the same time points. At 4, 12, and 24 weeks, the gross, histological, and immunohistochemical observations were performed, and histological score also was processed according to Wakitani's score criteria. The collagen contents in the repair tissues and normal patellofemoral cartilage were detected by the improved hydroxyproline (HPR) method at 24 weeks. Electron microscope was used to observe repair tissues of groups A and B at 24 weeks. Results All animals were survival at the end of experiment. At 24 weeks after operation, defect was repaired with time, and the repair tissue was similar to normal cartilage in group A; the repair tissue was even without boundary with normal cartilage in group B; and the repair tissue was uneven with clear boundary with normal cartilage in groups C and D. Histological staining showed that the repair tissues had no difference with normal cartilage in group A; many oval chondrocytes-l ike cells and l ight-colored matrix were seen in the repair tissues of group B; only a few small spindle-shaped fibroblasts were seen in groups C and D. Moreover, histological scores of group A were significantly better than those of groups B, C, and D (P<0.05) at 4, 12, and 24 weeks. Electron microscope observation showed that a large number of lacuna were seen on the surface of repair tissue in group A, and chondrocytes contained glycogen granules were located in lacunae, and were surrounded with the collagen fibers, which was better than that in group B. Collagen content of the repair tissue in group A was significantly higher than that in groups B, C, and D (P<0.05), but it was significantly lower than that of normal cartilage (P<0.05). Conclusion Combination of micro-fracture and rhIGF-1 for the treatment of full thickness articular cartilage defects could promote the repair of defects by hyaline cartilage.