ObjectiveTo investigate the effect of expressions of nucleoside transporters subtype (hENT1 and hENT2) on 5-fluorouracil(5-FU) cytotoxicity in breast cancer cell lines(MDA-MB-231, MDA-MB-468, SK-BR-3, MCF-7). MethodsFour breast cancer cell lines were chosen to detect the mRNA expressions of hENT1 and hENT2 by RT-PCR. Cells were incubated in the medium with a serial concentrations of 5-FU from 1.28×104 ng/L to 2.00×108 ng/L for 48 h. Then the cell proliferation in each cell line was measured by MTT assay and the IC50 was evaluated. Results①The mRNA expressions of hENT1 and hENT2 in the MDA-MB-231, MDA-MB-468, or SK-BR-3 cells were significantly higher than thoes in the MCF-7 cells(P < 0.05). The mRNA expression of hENT2 was detected in the MDA-MB-231, MDA-MB-468, or SK-BR-3 cells, not detected in the MCF-7 cells. 2MTT showed that IC50 of 5-FU in the MDAMB-231, MDA-MB-468, or SK-BR-3 cells was significantly lower than that in the MCF-7 cells(P < 0.05). There was no statistical difference of IC50 among the three lines(MDA-MB-231, MDA-MB-468, and SK-BR-3)(P > 0.05).③The three lines(MDA-MB-231, MDA-MB-468, and SK-BR-3) with lower IC50 of 5-FU highly expressed hENTs, and MCF-7 cell with the higher IC50 of 5-FU expressed less hENTs. ConclusionsThe expressions of hENTs in breast cancer cell lines can significantly influence 5-FU cytotoxic effect. It is implicated that the hENTs expressions might be the clue to the choice of nucleoside anticancer drugs in clinic.
Hypervirulent Klebsiella pneumoniae has the characteristics of high virulence and high viscosity, which can cause pneumonia, bacteremia, liver abscess, meningitis and other diseases, and in severe cases, it can be life-threatening. At present, studies on the pathogenic mechanism of hypervirulent Klebsiella pneumoniae showed that siderophore virulence genes play an important role in it. The siderophores closely related to hypervirulent Klebsiella pneumoniae virulence mainly include aerobactin, enterobactin, yersiniabactin and salmochelin. Siderophore-related virulence genes mainly include aer, iucB, iroNB and kfuBC. This article focuses on a brief review of the role of siderophore virulence genes in the pathogenic mechanism of hypervirulent Klebsiella pneumoniae, and aims to guide infection control.
Objective To investigate the growth, expansion, and metabolic characteristics of the human dermal fibroblasts cultured in a bioreactor with batch and medium exchange modes. Methods Human dermal fibroblasts separated from foreskin were seeded into a 1.5 liter CelliGen bioreactor with 5mg/ml of microcarriers. The cell growth, glucose consumption and lactate accumulation in both batch and medium exchange cultures were measured. Results The growth density of fibroblasts cultured in the bioreactor with medium-exchange mode reached 2.08×106 cell/ml, expande 29.7 folds, which was 1.81 times as high as that in batch culture. By comparison with the results obtained in T-flasks and spinners under the same medium-exchange conditions, the cell density in the bioreactor was 9.16 and 1.43 times as high as those in T-flasks and spinners respectively owing to that the limitation effect the attachment surface, nutrient exhaust, and by-product accumulation on the growth of fibroblasts in the bioreactor by using microcarriers, medium-exchange, as well as gas aeration was elimnated. Conclution The above results indicate that suspended cultures with microcarriers in bioreactors are an effective approach to rpovide large amounts of seeding cells for tissue engineering.
Objective To construct a green fluorescent protein expression plasmid pEGFP-C3-anti-TAG72 scFv-CD28, containing anti-TAG72 single chain variable fragment (scFv) fused into the transmembrane and intracellular domain of the signal-transducing chain of CD28 gene, and to transfect it into peripheral blood mononuclear cells. Methods Recombinant transmembrane and intracellular domain of CD28 cDNA and anti-TAG72 scFv cDNA fragment was subcloned into pEGFP-C3 vector. Recombinant clones were selected by Kanamyein, and then identified by PCR, enzyme digestion analysis and DNA sequencing. The recombinant plasmid was transfected into peripheral blood mononuclear cells by means of lipofection. The recombinant protein expression was confirmed by immunocytochemistry, laser scanning confocal microscope, PCR and Western blot analysis. Results The fused gene fragment of anti-TAG72 scFv-CD28 was successfully inserted into pEGFP-C3 plasmid, and it was confirmed by enzyme digestion and DNA sequencing. The fused anti-TAG72 scFv-CD28 gene and its protein was identified in peripheral blood mononuclear cells. Conclusion The eukaryotic expression plasmid pEGFP-C3-anti-TAG72 scFv-CD28 was successfully constructed and transiently expressed in peripheral blood mononuclear cells, which would lay a foundation for further studies on the role of it to activate tumor-associated antigen-specific T lymphocyte, for generating of modified T lymphocytes targeting gastrointestinal tumors.
Objective To construct AWP1 (associated with protein kinase C related kinase 1) recombinant adenovirus as the tool of transferring the gene and investigate its expression and localization in human vascular endothelial cell ECV304. Methods Cloned AWP1 cDNA was inserted into the multiply clone sites (MCS) of plasmid pcDNA3 for adding flag tag, and the flag-AWP1 gene was subcloned into shuttle vector pAdTrack-CMV. After identified with restrictional enzymes, plasmid pAdTrack-flag-AWP1 was linearized by digestion with restriction endonuclease PmeⅠ, and subsequently cotransformed into E.coli BJ5183 cells with adenoviral backbone plasmid pAdEasy-1 to make homologous recombination. After linearized by PacⅠ, the homologous recombinant adenovirus plasmid transfected into 293 cells with Lipofectamine to pack recombinant adenovirus. After PCR assay of recombinant adenovirus granules, recombinant adenoviruses infected 293 cells repeatedly for obtaining the high-level adenoviruses solution. And then, the recombinant adenoviruses infected human ECV304 cells for observing the expression and localization of AWP1 under laser scanning confocal microscope (LSCM). Results PCR assay showed that recombinant adenovirus Ad-flag-AWP1 was obtained successfully; and ECV304 cells were infected high-efficiently by the homologous recombinant virus. Then, it was observed that flag-AWP1 protein expressed in ECV304 cells and distributed in the leading edges of the cell membrane. Conclusion The vectors of flag-AWP1 recombinant adenovirus are constructed, and the localization of AWP1 protein in ECV304 cells might show that AWP1 may be a potential role on the cell signal transduction.
OBJECTIVE: To construct eukaryotic expression vector of rat myogenin gene for further study on its functions in skeletal muscle denervated atrophy and repair. METHODS: The cloning vectors (containing full length of myogenin cDNA and two restriction sites: Hind III and Xho I) were first cut by two restriction endonuclease: Hind III and Xho I, and the same as the eukaryotic expression vector; then, the myogenin cDNA and the digested vector were ligated by T4 DNA ligase, and recombinant eukaryotic expression vector was formed. Its length was certificated by agarose gel electrophoresis analysis, digestion with Hind III and Xho I, PCR; and the rightness of the myogenin cDNA sequence was confirmed by sequencing. RESULTS: The results of agarose gel electrophoresis analysis, digestion, and PCR confirmed the right length of inserted DNA, which was the same as the myogenin cDNA, and the sequencing result of pcDNA3-myogenin was identical with the reported. CONCLUSION: pcDNA3-myogenin a eukaryotic expression vector, is successfully constructed.
Objective To construct replication-defective adenovirus containing tk gene (ADV-tk). Methods Recombinant adenovirus of ADV-tk was constructed using homologous recombination in cells. After the interested tk gene fragment in the recombinant plasmid obtained was confirmed by PCR, the titre of purified recombinant adenovirus was detected. In vitro study, tk gene in SMMC7721 cells transfected by ADV-tk was investigated by RT-PCR. In vivo study, ADV-tk was injected intraperitoneally into BALB/c nude mice with liver cancer and apoptosis cells in tumor were observed. Results Recombinant adenovirus containing ADV-tk was proved successfully. The titre of purified recombinant adenovirus was 1.4×1010 pfu/ml. In vitro study, tk was integrated and expressed by SMMC-7721 cells. In vivo study, with the injection of ADV-tk, apoptosis cells in tumor increased. Conclusion A replication-defective adenovirus containing tk gene is successfully constructed, which may useful for further research on tumor suicide gene therapy with ADV-tk.
Objective To develop an in vitro three-dimensional angiogenesis system and analyze the expression and function of CD105 in angiogenesis. Methods After primary human umbilical vein endothelial cells (HUVEC) were purified and cultured, the microcarriers were coated with HUVEC and then embedded and cultured into fibrin gel. The angiogenesis process of HUVEC on the microcarriers was formed. The expression of CD105 during this process was detected by reverse transcription polymerase chain reaction (RT-PCR). Antisense oligodeoxynucleotide (ASODN) was used to inhibit the expression of CD105 and the changes of the angiogenesis process were analyzed quantitatively. Results HUVEC on the microcarriers which were embedded into the fibrin gel, occurred the angiogenesis process of sprouts, branches and capillary networks with lumina. During this process, CD105 was over expressed in the periods of forming sprouts and branches, and depressed in the relatively steady periods including the periods before forming sprouts and after forming capillary networks. While the expression of CD105 was inhibited by ASODN, the angiogenesis process was significantly inhibited. Conclusions The expression of CD105 is varied within the angiogenesis process, over expressing during the sprouts and branches forming periods. Inhibiting the expression of CD105 could efficiently inhibit angiogenesis.
Objective To study the time effect of the gene expression of recombinant adeno-associated virus (rAAV) vector co-expressing human vascular endothel ial growth factor 165 (hVEGF165) and human bone morphogenetic protein 7 (hBMP-7) genes so as to lay a theoretical foundation for gene therapy of osteonecrosis. Methods The best multipl icity of infection (MOI) of BMSCs transfected with rAAV was detected by fluorescent cell counting. The 3rd generation rabbit bone mesenchymal stem cells (BMSCs) were transfected with rAAV-hVEGF165-internal ribosome entry site (IRES)-hBMP-7 (experimental group) and green fluorescent protein (GFP) labeled rAAV-IRES-GFP (control group), respectively. The expression of GFP was observed by inverted fluorescent microscope. The expressions of hVEGF165 and hBMP-7 were assessed by RT-PCR assay and Western blot assay in vitro. The transfected cells in 2 groups were prepared into suspension with 5 × 106 cells/mL, and injected into the rabbit thigh muscles of experimental group 1 (n=9) and control group 1 (n=9), respectively. The muscle injected with rAAV-IRES-GFP was sl iced by frozen section method and the expression of GFP protein was observed by inverted fluorescent microscope. The expressions of hVEGF165 and hBMP-7 were assessed by Western blot assay and ELISA assay in vivo. Results The best MOI of BMSCs transfected with rAAV was 5 × 104 v.g/cell. In vitro, the expressions of GFP, hVEGF165, and hBMP-7 genes started at 1 day after transfection, the expressions obviously increased at 14 days after transfection, and the expression maintained the b level at 28 days after transfection. In vivo, the expressions of GFP, hVEGF165, and hBMP-7 genes could be detected at 2 weeks after injection, and b expressions were shown at 6 to 8 weeks after injection. The values of hVEGF165 and hBMP-7 were (248.67 ± 75.58) pg/mL and (4.80 ± 0.61) ng/mL respectively in experimental group 1, and were (32.28 ± 8.42) pg/mL and (0.64 ± 0.42) ng/mL respectively in control group 1; showing significant differences between 2 groups (P lt; 0.05). Conclusion The rAAV-hVEGF165-IRES-hBMP-7 has efficient gene expression ability.