The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance (P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.
Motor imagery is often used in the fields of sports training and neurorehabilitation for its advantages of being highly targeted, easy to learn, and requiring no special equipment, and has become a major research paradigm in cognitive neuroscience. Transcranial direct current stimulation (tDCS), an emerging neuromodulation technique, modulates cortical excitability, which in turn affects functions such as locomotion. However, it is unclear whether tDCS has a positive effect on motor imagery task states. In this paper, 16 young healthy subjects were included, and the electroencephalogram (EEG) signals and near-infrared spectrum (NIRS) signals of the subjects were collected when they were performing motor imagery tasks before and after receiving tDCS, and the changes in multiscale sample entropy (MSE) and haemoglobin concentration were calculated and analyzed during the different tasks. The results found that MSE of task-related brain regions increased, oxygenated haemoglobin concentration increased, and total haemoglobin concentration rose after tDCS stimulation, indicating that tDCS increased the activation of task-related brain regions and had a positive effect on motor imagery. This study may provide some reference value for the clinical study of tDCS combined with motor imagery.
ObjectiveTo investigate the feasibility and effectiveness of motor imagery based brain computer interface with wrist passive movement in chronic stroke patients with wrist extension impairment.MethodsFifteen chronic stroke patients with a mean age of (47.60±14.66) years were recruited from March 2017 to June 2018. At baseline, motor imagery ability was assessed first. Then motor imagery based brain computer interface with wrist passive movement was given as an intervention. Both range of motion of paretic wrist and Barthel index was assessed before and after the intervention.ResultsAmong the 15 chronic stroke patients admitted in the study, 12 finished the whole therapy, and 3 failed to pass the initial assessment. After the therapy, the 12 participants who completed the whole sessions of the treatment and follow up had improved ability of control electroencephalogram, in whom 9 regained the ability to actively extend the affected wrist, and the other 3 failed to actively extend their wrist (the rate of active extending wrist was 75%). The activity of daily life of all the participants did not change significantly before and after intervention, and no discomfort was found after daily treatment.ConclusionIn chronic stroke patients with wrist extension impairment, motor imagery based brain computer interface with wrist passive movement training is feasible and effective.
Aiming at the problem of low recognition accuracy of motor imagery electroencephalogram signal due to individual differences of subjects, an individual adaptive feature representation method of motor imagery electroencephalogram signal is proposed in this paper. Firstly, based on the individual differences and signal characteristics in different frequency bands, an adaptive channel selection method based on expansive relevant features with label F (ReliefF) was proposed. By extracting five time-frequency domain observation features of each frequency band signal, ReliefF algorithm was employed to evaluate the effectiveness of the frequency band signal in each channel, and then the corresponding signal channel was selected for each frequency band. Secondly, a feature representation method of common space pattern (CSP) based on fast correlation-based filter (FCBF) was proposed (CSP-FCBF). The features of electroencephalogram signal were extracted by CSP, and the best feature sets were obtained by using FCBF to optimize the features, so as to realize the effective state representation of motor imagery electroencephalogram signal. Finally, support vector machine (SVM) was adopted as a classifier to realize identification. Experimental results show that the proposed method in this research can effectively represent the states of motor imagery electroencephalogram signal, with an average identification accuracy of (83.0±5.5)% for four types of states, which is 6.6% higher than the traditional CSP feature representation method. The research results obtained in the feature representation of motor imagery electroencephalogram signal lay the foundation for the realization of adaptive electroencephalogram signal decoding and its application.
Motor imagery (MI) is a mental process that can be recognized by electroencephalography (EEG) without actual movement. It has significant research value and application potential in the field of brain-computer interface (BCI) technology. To address the challenges posed by the non-stationary nature and low signal-to-noise ratio of MI-EEG signals, this study proposed a Riemannian spatial filtering and domain adaptation (RSFDA) method for improving the accuracy and efficiency of cross-session MI-BCI classification tasks. The approach addressed the issue of inconsistent data distribution between source and target domains through a multi-module collaborative framework, which enhanced the generalization capability of cross-session MI-EEG classification models. Comparative experiments were conducted on three public datasets to evaluate RSFDA against eight existing methods in terms of classification accuracy and computational efficiency. The experimental results demonstrated that RSFDA achieved an average classification accuracy of 79.37%, outperforming the state-of-the-art deep learning method Tensor-CSPNet (76.46%) by 2.91% (P < 0.01). Furthermore, the proposed method showed significantly lower computational costs, requiring only approximately 3 minutes of average training time compared to Tensor-CSPNet’s 25 minutes, representing a reduction of 22 minutes. These findings indicate that the RSFDA method demonstrates superior performance in cross-session MI-EEG classification tasks by effectively balancing accuracy and efficiency. However, its applicability in complex transfer learning scenarios remains to be further investigated.
Neurological damage caused by stroke is one of the main causes of motor dysfunction in patients, which brings great spiritual and economic burdens for society and families. Motor imagery is an important assisting method for the rehabilitation of patients after stroke, which is easy to learn with low cost and has great significance in improving the motor function and the quality of patient's life. This paper mainly summarizes the positive effects of motor imagery on post-stroke rehabilitation, outlines the physiological performance and theoretical model of motor imagery, the influencing factors of motor imagery, the scoring criteria of motor imagery and analyzes the shortcomings such as the few kinds of experimental subject, the subjective evaluation method and the low resolution of the experimental equipment in the process of rehabilitation of motor function in post-stroke patients. It is hopeful that patients with stroke will be more scientifically and effectively using motor imagery therapy.
The research on brain functional mechanism and cognitive status based on brain network has the vital significance. According to a time–frequency method, partial directed coherence (PDC), for measuring directional interactions over time and frequency from scalp-recorded electroencephalogram (EEG) signals, this paper proposed dynamic PDC (dPDC) method to model the brain network for motor imagery. The parameters attributes (out-degree, in-degree, clustering coefficient and eccentricity) of effective network for 9 subjects were calculated based on dataset from BCI competitions IV in 2008, and then the interaction between different locations for the network character and significance of motor imagery was analyzed. The clustering coefficients for both groups were higher than those of the random network and the path length was close to that of random network. These experimental results show that the effective network has a small world property. The analysis of the network parameter attributes for the left and right hands verified that there was a significant difference on ROI2 (P = 0.007) and ROI3 (P = 0.002) regions for out-degree. The information flows of effective network based dPDC algorithm among different brain regions illustrated the active regions for motor imagery mainly located in fronto-central regions (ROI2 and ROI3) and parieto-occipital regions (ROI5 and ROI6). Therefore, the effective network based dPDC algorithm can be effective to reflect the change of imagery motor, and can be used as a practical index to research neural mechanisms.
Regarding to the channel selection problem during the classification of electroencephalogram (EEG) signals, we proposed a novel method, Relief-SBS, in this paper. Firstly, the proposed method performed EEG channel selection by combining the principles of Relief and sequential backward selection (SBS) algorithms. And then correlation coefficient was used for classification of EEG signals. The selected channels that achieved optimal classification accuracy were considered as optimal channels. The data recorded from motor imagery task experiments were analyzed, and the results showed that the channels selected with our proposed method achieved excellent classification accuracy, and also outperformed other feature selection methods. In addition, the distribution of the optimal channels was proved to be consistent with the neurophysiological knowledge. This demonstrates the effectiveness of our method. It can be well concluded that our proposed method, Relief-SBS, provides a new way for channel selection.
This paper aims to realize the decoding of single trial motor imagery electroencephalogram (EEG) signal by extracting and classifying the optimized features of EEG signal. In the classification and recognition of multi-channel EEG signals, there is often a lack of effective feature selection strategies in the selection of the data of each channel and the dimension of spatial filters. In view of this problem, a method combining sparse idea and greedy search (GS) was proposed to improve the feature extraction of common spatial pattern (CSP). The improved common spatial pattern could effectively overcome the problem of repeated selection of feature patterns in the feature vector space extracted by the traditional method, and make the extracted features have more obvious characteristic differences. Then the extracted features were classified by Fisher linear discriminant analysis (FLDA). The experimental results showed that the classification accuracy obtained by proposed method was 19% higher on average than that of traditional common spatial pattern. And high classification accuracy could be obtained by selecting feature set with small size. The research results obtained in the feature extraction of EEG signals lay the foundation for the realization of motor imagery EEG decoding.